IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-6, NO. 2, MARCH 1987 241

A Parallel Adaptable Routing Algorithm and its
Implementation on a Two-Dimensional Array
Processor

TAKUMI WATANABE, MEMBER, IEEE, HITOSHI KITAZAWA, MEMBER, IEEE, AND YOSHI SUGIYAMA

Abstract—A new parallel-processing wire-routing algorithm is pre-
sented and implemented on a parallel processor. The two main features
of the parallel algorithm are the control of the path quality and the
finding of a quasi-minimum Steiner tree. Both Lee’s maze algorithm
and the proposed algorithm are implemented on an AAP-1 two-dimen-
sional array processor, and the performance is compared to that of
software programming on a general-purpose computer. It is shown ex-
perimentally that routing by the proposed algorithm implemented on
the AAP-1 is 230 times faster than a software maze router run on a 1-
MIPS computer for a three-pin/net circuit on a 256 X 256 grid.

I. INTRODUCTION

ITH ADVANCES in VLSI technology, high-per-

formance and high-density VLSI layouts have been
required in the design automation field. Parallel process-
ing has attracted a great deal of attention as a promising
technique for satisfying these requirements. A number of
special hardware engines have been proposed for design
automation. The cellular array processor AAP-1 (Adap-
tive Array Processor) has been developed by NTT and has
already been applied to two-dimensional data processing
[11-[3]. A placement problem has been implemented on
the AAP-1, and it is shown that the processing time can
be reduced to 1/0.06N (N = number of placement mod-
ules) compared to a software solution carried out by a se-
quential computer (1 MIPS) [4].

In the routing field, many sequential processing algo-
rithms have been presented [5]-[8]; however, except for
the Lee maze algorithm [5], parallel-processing algo-
rithms have not been widely investigated. losupovici [9]
has proposed a special hardware architecture for a maze
routing. Adshead [10], [11] has reported an improvement
over the conventional software approach by a factor of
more than 60 by applying a distributed array processor
(DAP) in an 8K gate array routing. Breuer and Shamsa
[12] and Blank et al. [13] have also proposed a similar
architecture for a maze routing. Nair er al. [14] and Hong
et al. [15] have described the techniques for gate array
routing in special hardware. In these hardware algo-
rithms, the wave-expansion phase can be processed in
parallel but the trace-back phase still remains sequential.

Manuscript received February 22, 1985; revised October 28, 1986.
The authors are with Atsugi Electrical Communications Laboratories,

NTT, 3-1 Morinosato, Wakamiya, Atsugi-shi, Kanagawa 243-01, Japan.
IEEE Log Number 8612848.

A maze router will always find the shortest path for two-
point nets, but no consideration has been given to the
multipoint net problem.

This paper presents a new parallel-routing algorithm
suited for parallel processing and discusses its implemen-
tation on the AAP-1. The proposed algorithm, referred to
as the parallel adaptable routing (PAR) algorithm, is based
on the rectilinear expansion of zones by a given expansion
distance. The PAR algorithm can be further subdivided
into two algorithms: a controllable-path-quality algorithm
and a quasi-minimum-Steiner-tree-finding algorithm. The
former controls the path quality by changing the expan-
sion distance. It is shown that this algorithm includes
Lee’s algorithm and parallel line-search or line-expansion
algorithms at extreme expansion distances. For the latter
algorithm, a quasi-minimum Steiner tree can be obtained
by taking the local mutual relationship between the net
terminals into account.

In Section II, the structure of the Adaptive Array Pro-
cessor (AAP-1) is briefly outlined. The routing problem
and the conventional Lee’s maze algorithm are discribed
in Section III. The controllable-path-quality algorithm is
explained, and then the quasi-minimum-Steiner-tree-find-
ing algorithm is described in Section IV. In Section V,
implementations of the algorithm on the AAP-1 are dis-
cussed in addition to the Lee algorithm. Finally, experi-
mental results are discussed in Section VI.

II. OVERVIEW OF ADAPTIVE ARRAY PROCESSOR
(AAP-1)

The AAP-1 is a high-performance two-dimensional
SIMD cellular array processor which can operate as a
back-end processor for a host computer. It contains 256
X 256 1-bit processing elements (PE’s). The AAP-1 con-
sists of five major components: a PE array, an array con-
trol unit, a data buffer memory, an instruction memory,
and an interface unit, as shown in Fig. 1. The PE consists
of a RALU and two data transfer units. The RALU has
an ALU and two register files. Each PE can communicate
with its nearest orthogonal or diagonal neighbor through
the data transfer unit. The top/bottom and right/left PE’s
are connected to each other, resulting in what is called a
torus structure.

An application program can be coded with Fortran and

0278-0070/87/0300-0241$01.00 © 1987 IEEE

Authorized licensed use limited to: Yuan-Ze University. Downloaded on October 24, 2009 at 12:39 from IEEE Xplore. Restrictions apply.

242

HOST COMPUTER
L4

INTERFACE UNIT

DATA BUFFER INSTRUCTION
MEMORY UNIT MEMORY UNIT

ARRAY CON-
TROL UNIT

ARRAY UNILT
256 x 256 : PE

Fig. 1. AAP-1 system diagram.

TRANSFER DIRECTION

—oco—~-—-o-0o

[—-oo—-—-—0 -0
S —oo-—o-o0

i

[—

TRANSPARENT OR TRANSPARENT OR
DESTINATION PEs DESTINATION PEg

(a) (b)
Fig. 2. Ripple-through transfer (a) before execution and (b) after execu-
tion.

AAP-1 macroassembly language. The host computer gen-
erates AAP-1 machine codes, submits them to the AAP-
1, and then receives its run results in the process of job
execution. One of the most useful AAP-1 operations for
parallel routing is the ripple-through operation shown in
Fig. 2. Data are transferred to the distant PE’s as far as
the signal can propagate asynchronously within each clock
interval. With this operation, the source PE’s (arbitrarily
defined) can transmit their own 1-bit datum along one of
the eight directions (diagonal or orthogonal). The PE’s
other than the source act as the transfer PE’s or destina-
tion PE’s. Approximately 18 machine cycles are required
if the data of the leftmost (rightmost) PE’s are transferred
to all PE’s on their right hand (left hand). The situation
is the same for a vertical data transfer.

III. Basic RouTING CONCEPTS

The specific routing problem encountered in this paper
and the conventional Lee routing algorithm, which has
usually been implemented on a two-dimensional array
processor, are described in this section.

A. Routing Problem

Consider connecting points, which are treated as start-
ing and destination points, and obstructions on a rectan-

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-6, NO. 2,

MARCH 1987

1

—

B/B|B|B
BB

Fig. 3. Routing problem.

gular grid, and paths which are orthogonal lines passing
through the grid. One connection can be made per grid
cell. A routing area has two different layers available for
routing. For ease of describing the algorithm, it will be
explained as a one-layered problem. Fig. 3 shows an ex-
ample of the routing problem.

B. Conventional Lee Routing Algorithm

The Lee maze algorithm, which is a technique for find-
ing the shortest path between two points, is composed of
three phases: wavefront expansion, trace back, and cell
clearing. The wavefront expands until the destination is
hit; then a connecting path is located by following the
descending wavefront labels back to the starting point.
The wave-expansion and cell-clearing phase can be easily
performed by parallel processing on a two-dimensional
array processor. Thus, when compared with a sequential
approach, the time complexity can be reduced from a
square to a linear increase. A maze router will always find
only a minimal-length path between two points, and no
consideration has been given to a multipoint net problem.

IV. PARALLEL-ROUTING ALGORITHM

In the conventional routing method, a multipoint net
problem is usually solved by decomposing the problem
into two-point net subproblems. These subproblems are
solved sequentially as the path found previously is used
as the starting point. Depending on the order in which
points are routed, this procedure sometimes results in the
choice of redundant or lengthy paths. Fig. 4 shows an
example of a multipoint net connection problem. In this
figure, the solid lines show the multipoint net routing that
a conventional maze router finds in some cases; the bro-
ken lines show the desirable result.

The parallel adaptable routing (PAR) algorithm con-
sists of two categories: the controllable-path-quality al-
gorithim (PAR-1) and the quasi-minimum-Steiner-tree-
finding algorithm (PAR-2). PAR-1 controls the path qual-
ity, i.e., path length and number of corners, by changing
the expansion distance. PAR-2 finds a quasi-minimum
Steiner tree for a multipoint net. PAR-1 and then PAR-2
are explained in this section. The routing problem consid-
ered is the same as Lee’s maze routing algorithm.

A. Controllable-Path-Quality Algorithm (PAR-1)

The Lee maze algorithm and the line-search algorithm
have traditionally been treated as being different routing

Authorized licensed use limited to: Yuan-Ze University. Downloaded on October 24, 2009 at 12:39 from IEEE Xplore. Restrictions apply.

WATANABE e al.: PARALLEL ADAPTABLE ROUTING ALGORITHM

wallunjlus)
sellusiius)
o|ao|co
0|0|mo
eelioslive

g g e

I
I
|
|
|
— 11
1
1
I
{
|
t
|

o

Fig. 4. Multipoint net routing problem. Solid lines denote typical results
of conventional routers, broken lines the desirable results. 7|, T, T; are
connecting points, and B denotes obstructions.

techniques. Both algorithms can be expressed in PAR-1
by introducing the expansion distance D,,. Additionally,
different quality paths can be obtained by choosing differ-
ent D, values. Path quality entails both path length and
the number of path corners or vias. This algorithm differs
from the original Lee algorithm in that the expansion dis-
tance is not limited to unity but can take any value D,, for
each step. When D,, is set to unity, it is equivalent to the
original Lee algorithm. When D, is set to infinity, it
functions as the parallel line-search or line-expansion al-
gorithm. Fig. 5§ shows three typical expansion diagrams
when D,, is unity, 3, and infinity, respectively. An ex-
ample of two-point net routing for D,, = 4 is given in
Fig. 6. The algorithm procedure is as follows.

A. Path-Search Phase

Step 1. (Initialization)

First, clear all cells. Set obstruction flag (BC),
start flag (SC), and target flag (TC) cells. Set
SC to expanding cells (EC). Set label number

or search number NL = 1.

243
2
212
21812
212
2
(a)
2
2
2
22241222
2221222
2221222
2221118111222
2221222
2221222
2221222
2
2
2
(b)
222222212222222
222222212222222
222222212222222
222222212222222
222222212222222
222222212222222
22222221 2222222
Pttt esSteretrnd
222222212222222
222222212222222
22222221 2222222
222222212222222
222222%212222222
22222221 2222222
222222212222222

()
Fig. 5. PAR-1 expansion diagram. (a) D., = 1 (wave expansion). (b) D,,

Step 2.

Step 3.

Step 4.
Step 5.

Step 6.

Expand zones from the EC vertically and hor-
izontally to the distance D,, unless this expan-
sion is obstructed. Then, set LABEL = NL on
the expanded zone (Fig. 6(a)-(c)).

If one of the expanded zones hits the target
cell (TC) then go to trace-back phase (Fig.
6(c)).

Set NL = NL + 1.

Set the expanded zone and starting cells to the
EC.

Go to step 2.

B. Trace-Back Phase

Step 1.

Step 2.

(Initialization)

Set label number LX = NL. Set TC to a corner
or terminal cell C;y. Set SCto Cy. If LX =1
then go to step 3.

Expand the line in the same manner as in the
path-search phase from the C;x. One of the
expanded lines hits a cell labeled LX — 1
(Crx_) (Fig. 6(d), (e)). Then store a line seg-
ment between C;x and C;y_ as a part of the
path.

=3.(c) D, = oo.
Step 3. If the C;x_, is the SC then go to step 6 (Fig.
6(f)).
Step4. SetlX =LX -1
Step 5. Go to step 2. :
Step 6. For the next net, reset the previous path as the

BC. Then go to the path-search phase.

The PAR-1 finds a path with the minimum number of
search operations (N,). Fig. 7 shows that various paths
can be obtained between two points by changing the D,
value. When D, is set to unity, it finds a minimal-length
path (). When D, is set to infinity, or L,, where L, is
greater than the length of the routing area, the PAR-1 finds
a minimum corner path (P,) since the number of the cor-
ners is equal to N; — 1. For a two-layered problem, where
horizontal routings are isolated from vertical routings and
connections between them are made through via holes, it
finds a minimum via path. If D, is set low, the total path
length is shortened and the number of vias is increased.
Conversely, if D,, is set large, the total path length be-
comes long and the number of vias decreases for multinet
routing problems. Assume that three different paths exist

Authorized licensed use limited to: Yuan-Ze University. Downloaded on October 24, 2009 at 12:39 from IEEE Xplore. Restrictions apply.

244 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-6, NO. 2, MARCH 1987

!
(a) 212121 (b)
2|21 ¢
2/2/1]2
] 2l2[1]2
@ NS
| 2(2;2]1!2
| t[2[2[2]2
1 2[2[2[1]2l2]2]2
[776]6]6]6]5 | 6[6[6[6]5 1
7(6]6/6[6]5 6/6]6]6/5/6 ¢
56/60 % 5(6]€
3[3]4[4]4[a[5]5 3/3[4]4[4a[5["
3/3[4]4]4[a[5]5 3]3[4]4/4/4[5[5
3[3[47/]5(5/66 FIBOZEBEC
3 6l6[7[7[7]7 3
(O i[20/6[6|T|7(T 2 212]1 |2 @
p[2l2[1[2/6[617/717]7 2 2[2]1 6]6
HANAZZ 7 2l212[1 GHBY
2[2[2[1]21/13]3]4]4]4 7 22 2]12 3lalalal Y
1! S 3(4/4/4 7717 L] }]S % 314/14/41"
Z2[2]2 2 5UAT[T(T Zl22[1]2 3%
27/5/5/6/616]6 2/2[277]5]5|6/6/6/6
2[2[2 2[2]27/15|5]6]6]6]6 212]2[1]2]2[2[2]/]5/5]6]6]616
[%%% %%
5 |
% 5 A 2
3(34(4]4a[4[5]5 2
3/3]4/4]4/4]5
3138755
3
(e) [2[2[2]1]2 . (f)
2[2[2[1]2
1207
1]277]3]34]4[4
S 3/3(4]4 L
AARNAZE
1T2[2]2]2 I
2[2[2]12]2[2]2 I

Fig. 6. PAR-1 algorithm (D,, = 4). Shaded areas represent obstacles. S is the starting cell and T the target cell. (a) Initial
expansion. (b) Second expansion. (c) End of path-search phase. (d) First trace-back. (e} Second trace-back. (f) Path deter-

mination.

Y I } "8'B B B
ey
SlgEelEE]]

— I

e e

Tﬁgﬁl B A 1

Fig. 7. Difference in paths with D,, between two points (S, 7'). B denotes
obstructions and P. is the minimum comer path (D, = o). P, is the
minimum length path (D, = 1), and P, is an alternate path (D,, = 4).

between two points: P, is a minimum corner path, P, is a
minimal length path, and P, is an additional path. The
total path length (L., L;, L,) of three paths can be calcu-
lated as follows:
Lc=Sc1+Sc2+Sc3+ te +Sc,‘
L1=S11 +S12+S13+ M +S[j
(LisL,sL,i<k=<j)

Lx=Sx1+Sx2+Sx3+"'+Sxk

where § is the length of a path segment. The search num-
bers (N,., N,; and N,,) of the paths (P., P, and P,) are
shown as follows:

N = [Sa/Dex] + [82/Dex] + -+
=i (Dy =)

[S1/Dex 1 + [S2/Dex’| + =+ + [8;/Dec]

(Dex = 1)

* [Su/Dex |

+ [_Sci/Dex—l

Ny

=S+ Syt e

Ny = [Sa/Dex] + [S2/Dex] + -+
(1 < Dy <)

+ S,

where [x| indicates a minimum positive number which
is not smaller than the value x. Table I gives the search
numbers (&) of Fig. 7 when the D., of P., P, and P, is
setat L,, 1, and 4, respectively. The algorithm selects the
smallest one for each case, i.e., the path P, (P,, P.) is
selected if D,, is set to 1 (4, L,). This table shows that
path quality is controlled by D.,. Other P., P,, and P,
examples are shown in Fig. 8. In this figure, when D,, is
infinity (L,), the algorithm selects a minimum corner path
even though the path selected is a detoured path (Fig.
8(a), P.). When D, is unity, a minimal-length path is

Authorized licensed use limited to: Yuan-Ze University. Downloaded on October 24, 2009 at 12:39 from IEEE Xplore. Restrictions apply.

WATANABE et al.: PARALLEL ADAPTABLE ROUTING ALGORITHM

TABLE I
SEARCH NUMBER
[P [P [Px
Number of corners| 2] 3
Dex= | 25 17 19
Ns | Dex=4 7 7 3]
Dex=La 3 7 4

A7)

P
1

T
‘i
] -

]

il

il

(b)

(©)

Fig. 8. Various paths with D,,. P_ is the minimum corner path (D, =
o); P, is the minimum length path (D,, = 1); and P, is an alternate
path (1 < D, < o). (a) Circuitous path (P.). (b) Excess comner path
(P,). (c) An alternate path (P,).

2li[2]3]a]5]6]7]8]9 [w q
1 i@l 1 [21B]B[B[B|B @.1]2]BB.B[B[B| |
[2]112]3]8[B]B[B|B 1]12]3/8/8/8!B[B. |
3/2]3]a]B/B|B[B[B [1.2.3]4{8[B[B|B|B
4/3]415/6:7.8]9 213:4]5]6]5[4]3]2]1
(a) [57a]5]6l7]8]9] &l] 3lal5]el7]6]5]atm2| (b)
6/5]6]7.8]9] 4'sl6(7|8]7]6]5[4 3|
[7]6]7]8]9 i 5.6,7.8/9[8[7,6[5/4
g[7]8]9l@ | %zea@gsnes‘
alglol | | ‘ [576T778]al8]7]6]514

T] ANNNAE [

) B|B[B8/B[B] | | BiB|B[B[B]
B/B|B. BB I 18]B[B[B[B |
B|B|B|BB| | I 8/8,8B|B] |

T 1213
() & 1 112306 | (d)
I 1230]
I 23 1]
;] i 11213
RN AR l
[T T [[T 1]
B|B|B[B|B) B'B|B;B|B[|
B/B/B B[B ‘ BBBBBH
B BiB[B|B] BBBBB“
© o+ 0
L 110
| 2]
[] L] L []

245

1

i
5

[2]1]2137a56l7] [' |1.2/3]473
18 1]2304]5]6] | §1,27374[54
2127347 5/6/7] 1'2°37a]5]6]5
173727314576]718) |234567§4(b)
@ BB B BB BBIY Beeeapeﬁ
[2l1ij1ojoho; 7[8 9l0)11]i0/9]8'
T@jloitl, 890 xDt1]10[9
L 12)112° [7i8[9[10;11]109]8]
r l A
o S
e A
) [BBBlBBB, . [B[BIB|B.B.B||| |
vEVRRRRNEG=

Fig. 9. Minimum corner with minimal-length paths. (a) Forward wave ex-
pansion. (b) Backward wave expansion. (c) restricted routing area.
Shaded area is the union set of minimal-length paths.

selected even though it is an excess corner path (Fig. 8(b),
P)). Another path (Fig. 8(c), P,) can also be obtained by
setting D, to a suitable value (1 < D, < L,). Thus, the
path quality, path length, or number of path corners (vias)
can be controlled according to net characteristics or ter-
minal locations in the net.

This algorithm is applied to obtain a minimum-corner
solution with a minimal-length path as follows. A wave-
front with an ascending label is expanded from SC until
it reaches TC; then a wavefront with a decreasing label is
also expanded from TC to SC unless the area is obstructed
as in Fig. 9 (double wave expansion). This is performed
by using PAR-1 with D,, = 1 (Fig. 9(a) and (b)). The
area whose ascending and descending labels coincide is
selected. This area is called a restricted routing area (Fig.
9(c)). A path is then found by using PAR-1 (D, = o)
within the restricted routing area. This is a minimum-cor-
ner path with minimal length, because the restricted rout-
ing area is the union set of minimal-length paths in which
PAR-1 (D,, = o) finds a minimum-corner path (Fig.
9(d)).

Fig. 10. Basic PAR-2 algorithm procedure. (a), (b) Double wave expan-
sion between T, and Ts. (c) Restricted routing area 1 (right hatched area).
(d) Double wave expansion between right hatched area and T5. (e) Re-
stricted routing area 2 (left hatched area). Common area of right and left
hatched area is a branch point (P). (f) Path determination.

B. Quasi-Minimum-Steiner-Tree-Finding Algorithm
(PAR-2)

A parallel-routing algorithm for a multipoint net
(PAR-2) which solves the redundantly lengthy path prob-
lem is described below. Routing for a three-point net,
which is the basic procedure for multipoint net routing, is
first explained in Fig. 10. In this particular problem, the
path between points 7, and T», which is the nearest point
from T, is found and then an attempt is made to connect
point T; anywhere on a predetermined path. Whether the
path between T, and 7, is best or not depends on the po-
sition of the third point (73). Therefore, the restricted
routing area (shaded area in Fig. 10(c)), which is obtained
by the double wave expansion (Fig. 10(a) and (b)), is left
without a specific path being determined until a branch
point is found. The double wave expansion is made be-
tween this shaded area and T3, and another restricted area
is then obtained (left hatched area in Fig. 10(e)). A branch
point P is appropriately selected by taking the logical AND
between the two restricted routing areas, i.e., the left and
the right hatched areas (Fig. 10(e)). The best path for T,
— T, — Ty which passes through the selected branch point
P is thus found (Fig. 10(f)). In addition, the result does
not depend on the order of the connecting points (T}, 75,
T3). The routing problem of a multipoint net can be solved
by iteratively applying this three-point routing technique.
The algorithm for multipoint routing is described as fol-
lows.

(Initialization)

Set the number of connecting points in the
net to NPIN, and set the area number NL =
1. Clear all cells. Set blocked cells. Then,

Step 1.

Authorized licensed use limited to: Yuan-Ze University. Downloaded on October 24, 2009 at 12:39 from IEEE Xplore. Restrictions apply.

246

choose a starting cell (arbitrarily selected) ¢y,
and set it to expanding cells (EC).

(Routing area restriction (double wave ex-
pansion)) Continue wave expansion (D, =
1) of an ascending label from EC until one
of the other connection points is hit. Then,
treat the point so hit (zy, , ;) as a destination
point (TC ;). Continue wave expansion (D,
= 1) of a descending label from 7Cy; until
EC is hit. Then, obtain a restricted routing
area Zy; and give that area the label NL.

If NL = 1 then go to step 6.

Set a logical aNp for EC and Zy; as a branch
point (Py;). If Py, is plural, then select one
among them.

If Py, does not include any connection point
in EC, then go to step 10.

If NL + 1 is equal to NPIN, then go to step
13.

Reset all labeled areas and previously deter-
mined path components to EC.

Set NL = NL + 1

Go to step 2.

(Path determination)

If Py, is a part of a previously determined
path component, then go to step 11; other-
wise, relate the three points #y, _,, ty;, and
Py toZy, ., where NL and NL — x are label
numbers of the area in which Py, is included
(I = x < NL). Determine part of the path
between the three points contained by Z,; _,
using the PAR-1 (D,, = o), where Py, is
to be a branch point. The routing area must
be restricted in the labeled NL — x area. Add
the newly obtained path component to the
previously determined path components.
Then, eliminate Zy, _ ..

If all points are connected with restricted
areas, then go to step 13.

Go to step 6.

Determine the path by connecting the two
points included in the remaining labeled areas
using the PAR-1 (D, =).

Step 2.

Step 3.
Step 4.

Step 5.
Step 6.
Step 7.

Step 8.
Step 9.
Step 10.

Step 11.

Step 12.
Step 13.

A more definite procedure for a multipoint connection
is explained using the example in Fig. 11. The restricted
routing areas for ¢, t,, 13, and 7, are obtained by the dou-
ble wave expansion, and labels 1, 2, and 3 are then given
to them (Fig. 11(a)-(c)). Label 3 does not contain any
point other than the destination #; (Fig. 11(c)). The two
areas labeled 2 and 3 intersect at point p;. A path com-
ponent is determined in the order of p; — ¢, and ;. Then,
eliminate the area labeled 2 from the restriction diagram
(Fig. 11(d)). For the remaining part, the same process is
repeated, and a path component 1, — p, — ¢, is deter-
mined. When all points are connected with the restricted
routing areas and path components, the remaining path
components between p, — t5 and p; — 1, are determined
(Fig. 11(e) and (f)).

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. CAD-6, NO. 2,

MARCH 1987

— ——
. ‘ o
bl I

| it L

JUEL I)
2y -

1
i
; i
. i [B
. t3 . t3
fs S ts B

t2 ‘ ' t
B -
L
[{" _ TV_J r;‘k_Ts
T 1
l P, . t
© | rr—p3n | LR

ﬁ t | t
L H
ty 3 ty 3

Fig. 11. PAR-2 algorithm. The area bounded by broken lines is the re-
stricted routing area. (a) First routing restriction (1, t,). (b) Second rout-
ing restriction (15, #3). (c) Third routing restriction (). P,: branching
point. (d) First path determination between 1,, t3, and 1,. (e) Fourth rout-
ing restriction (t5). P,: branching point. (f) Final result.

V. IMPLEMENTATION ON AAP-1

Lee’s algorithm and the PAR algorithm have been im-
plemented on the AAP-1. The grid cell array shown in
Section III corresponds to the PE array of the AAP-1
shown in Fig. 12. The flags for obstructions and for start-
ing and target (destination) cells are all set in the PE reg-
ister. All of the starting and target cells, i.e., terminals,
become obstructions unless they belong to the net con-
cerned. For a multilayered problem, the cells in the same
location in different layers are handled in the identical
PE’s. Then the expansion between the two layers is made
by using an intra-PE data transfer operation. When the
routing space size of the problem exceeds the physical
array size (256 X 256), the routing can be accomplished
by simply mapping or folding the space into several sheets
of 256 X 256 (16). The net information is stored in the
AAP-1 data buffer memory and sent to the PE array as
required. The complete routing process is carried out in
the AAP-1 without the need for communicating with the
host computer. The routing results, i.e., line segment co-
ordinates, are sent to the AAP-1 data buffer memory unit
whenever a net connection is completed. When routings
are finished for all nets, the AAP-1 sends the results back
to the host computer. The data transmission time between
the AAP-1 and the host computer is negligible for multi-
net routing. Fig. I3 shows the AAP-1 processing flow
chart.

A. Parallel Lee Maze Router

1) Path-Search Phase: Wave expansion is performed
by a shift operation (up, down, left and right directions),
which is the conventional method of data transfer in array
processors and intra-PE data transfer operations. Parallel
processing is carried out in this phase. Therefore, the time
required to expand from a starting cell (SC) to a target
(TC) cell is proportional to the distance between them.

Authorized licensed use limited to: Yuan-Ze University. Downloaded on October 24, 2009 at 12:39 from IEEE Xplore. Restrictions apply.

WATANABE ef al.: PARALLEL ADAPTABLE ROUTING ALGORITHM

Fig. 12. Routing grid on PE array.

]
(Net List)
Host Computer
Data Conversion

|
(Channel}
% S
Routing Process AAP- |
‘}, _
'

(Chur'mel)

Data Conversion o "

Host Computer
{Routing Result),,, { -

Fig. 13. AAP-1 processing flow chart.

2) Trace-Back Phase: Shift operations and intra-PE
data transfer operations are also used in this phase. De-
scending labels on the cells are then traced back sequen-
tially. Thus, the time required to trace back from TC to
SC is also proportional to the distance between them.

B. PAR-1

1) Path-Search Phase: Wave expansion is realized by
four directional shifts or ripple-through (RT) operations
in parallel with an intra-PE data transfer operation. When,
D., < L,, where L, is the length of the routing area size,
i.e., the array size, the unit expansion of D,, is made by
shifting D, times. Therefore, the required time is pro-
portional to the distance between SC and TC, just as in a
parallel Lee’s maze router.

When the D,, = L, the RT operation accomplishes the
path search extremely rapidly compared to the shift op-
eration. Here, the starting and obstruction cells are to be
source PE’s. The RT operation rectilinearly propagates
the datum “‘1’’ for the former and the datum ‘‘0*’ for the
latter, respectively. The time required to reach SC from
TC is proportional to the search number (N,) but not to
the distance between them.

2) Trace-Back Phase: This procedure is a sequential
process in itself. However, the RT operation makes it
possible to trace back each path segment rapidly. The op-
erations required are as small as the number of path seg-
ments to be traced back from SC to TC. The time required
to trace back from TC to SC is also proportional to the
search number (N,) or the number of path corners.

C. PAR-2

The routing area restriction (the double wave expan-
sion) 1s made by using the expansion of PAR-1 (D, =

247

i SEQUENTIAL
COMPUTER
(1 MIPS)

w

ROUTING AREA:
256 x 256

EXECUTION TIME f{sec.)
-— n

AAP - |
0l — |

0 50 100 150 200
PATH LENGTH

Fig. 14. Maze routing time on AAP-1 and 1-MIPS sequential computer.

g . —
E 8o .
L e
: e
— 601 T .
b=d T
9-4 A””
= 40L e~ 4
§ (Y o
>< i PAR- | (Dex=La)
W d
- PATH LENGTH:124
a J
<
< 0

0 5 10 15 20 25 30

NUMBER OF CORNERS

Fig. 15. AAP-1 execution time versus number of path corners on 256 X
256 grids.

1), i.e., wave expansion. The time required is propor-
tional to the distance between SC and TC. For the path-
determination phase, PAR-1 (D,, = L,) is applied. Thus,
the path determination time is proportional to the number
of corners in the path.

VI. EXPERIMENTAL RESULTS

The experimental results for two-layered problems
using the Lee algorithm and the PAR-1, PAR-2 imple-
mented on the AAP-1 are described in this section. Fig.
14 shows a comparison of the execution time of a maze
router implemented on an AAP-1 and on a 1-MIPS se-
quential computer. In this case, the AAP-1 can execute a
maze-routing algorithm about 100 times faster than a 1-
MIPS sequential computer.

The PAR-1 and PAR-2 algorithms are applied to var-
ious problems, and several fundamental characteristics of
these routing algorithms have been obtained. The rela-
tionship between the number of path corners and the
AAP-1 execution time is shown in Fig. 15. Fig. 16 shows
the relationship between path length and execution time.
The PAR-1 (D,, = L,) execution time is not proportional
to the path length but rather to the number of path corners,

since the path search is made by a ripple-through opera-
tion. On the other hand, the PAR-2 execution time (for

Authorized licensed use limited to: Yuan-Ze University. Downloaded on October 24, 2009 at 12:39 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-6, NO. 2, MARCH 1987

248

<
.
$ i 2= .m
5 |@ o ol £
[Fi} w = =
M = 2 : T inint T e Tk e el ot _.wxy.qi
= o TE|E &~ ,-+.-_r-_---.x-:x--*-T.X*TTTL_
a | x | _ - = M L. ‘ .u_m-.r-T.Xu_-J:X.-“-* _:r lempemboiea .**- - |_
= °° mo i L--r-_r,_- X ._.-_.-T.*L-*X*L-.--_ *-11._
< - !
® —
o o~ ~ ~~I%| &
> goxrEe 5
< El8loo ocoold| G
= S| 9 S [=9
= n_u. ey =
2 = T ere| s &
=~ ETE- I ol] B
o gl 3 oococo|lgl B el
2% 1S 3| o oo
Ml -~ 5| = .
<& £ EalE o T
== E || ==|2 T
S El5|© © oGl & Z
v g S| 3
s : - ~E > & .
= g = S o~
= NWK_ _(” 3 RC__
< co|lg|l o=
* 3 2 %
'3 < =
2 o m h(b\M..muv
m MNMTM w.l,\W)
g |E B o = m_T
5 . L € T o
& '§ 8§ 3 29
12 & & Lm*
o0 = 1 1 (=R]
£ ° E Yo <s
3 g S gz ©
2 k= S g exg
g~ [
] S L o o b0
a S S, %5
T T ; T T i3 x SVIA 40 H38WNN ° El =092
:] 2 w)
i & e 8 288 2R § ° 5 o =] o 52 25
- 1 4 - - (m Q / 2 S ma
' 7 5L 5 : ssirb
x ° 1 T ® % s o = S @
g = g 2 k) @® 2 —- 22 8
L o nw e~ | :%D > N = =%T &
sl ® % Sz \ : E3%%
) S WS \ =} o =
A M .ulul Qo 3 = n.b = D g =
L [1 © £ 9 Z T 18 I = E =]
\ z S [1€ G £ = Z O Q 3 9]
\ ot & . = 3 wE R=I o o © o
- “ 183 23 , 2 e w & s 34 2 §5< ¢
L \ 1 T mma ,r o © 2 ﬁN_ Q S < I R) .m
a/ = W ! v =z < m U< w o e O
Ay - — - —
\ T g s 22 R
A ~~
[B o RE % R2% Z.s5%
,) g £ 5 s SE3 3
[B e .

i s E] W © Do & ©
, : 22 8 8 8 8°° = s o 3 25389
- : : S e o x 8 8 8 8 3 - o0 o o ° 2 E= B
o 0 & . i B r~
8 8 8 8 © e & B § & @ 2 &« 5§ S & v~
(93sW) JWIL NOLLNIIXT | -dvv wn_.. (P) I._.ozm._ H1ivd {998) JWIL NOILNO3IX3 g o m % b

o = =
< Q = Q [,

. 2 5B
© o S5 o
o8 .20 O =
<% o EoS 24

Fig. 19. Multipoint net routing. (a) PAR-2. (b) Conventional maze router.

number of vias as a function of changes in D,, (PAR-1)
for a multinet problem. In this test problem is a two-lay-

M. connecting point. X: obstruction.

cedure is more complicated than that of a simple maze

vertical routings on 113 X 90 routing grids. Thus, a path

ered problem where horizontal routings are isolated from
corner corresponds to a via hole. Fig. 18 shows a com-

router, the PAR-2 is faster than the maze router on the
AAP-1. This is because the maze implementation on the

faster than a simple maze router in a 1-MIPS sequential

trace-back phase than does the PAR-2. Therefore, the
AAP-1 can execute the PAR-2 algorithm about 230 times
computer.

AAP-1 requires many more sequential operations in its

parison of the execution time between the PAR-2 and the
maze router implemented on the AAP-1. The test problem
uses random connection data for an average of three pins/
net in a 256 X 256 routing area. The average execution

time per net using the PAR-2 and the maze router were

100 and 230 ms, respectively. Although the PAR-2 pro-

Authorized licensed use limited to: Yuan-Ze University. Downloaded on October 24, 2009 at 12:39 from IEEE Xplore. Restrictions apply.

WATANABE er al.: PARALLEL ADAPTABLE ROUTING ALGORITHM

Sl Sl ’F;i i e»] <!

|t — — 4

AL H i HE R
.

Lo u e =

I i il

- 1 ju L 10

(A : el ik =
el AN ;l = TI; 7
i 4 —4

{
A — T
' {
1
P
: S
3.
b}
B[]
X
AL
= T
Th
- H

it} ?d' P ?
| i i
o - L |- —
. —
_IZ:__] - T T - L
B v = Y I o = = R

Fig. 20. PAR-2 routing result for a D-type flip-flop routing with 21 nets
and 110 terminats on 113 X 90 grids. AAP-1 execution time is 1.95 s.

Table II summarizes the time complexities of each rou-
ter. It can be seen that the processing time complexities
for the proposed algorithm are linear, whereas the soft-
ware sequential approach is not. Fig. 19 shows typical
results obtained using a PAR-2 (Fig. 19(a)) and a con-
ventional maze router (Fig. 19(b)) for multipoint routing
on a 25 x 25 grid. The lengths of the two paths obtained
were 57 and 64, and the numbers of corners were 17 and
20, respectively. Evaluating the path quality, an attempt
was made to manually shorten the path length of the
PAR-2 results having two to 14 connecting points per net.
The connection data and obstruction data were given ran-
domly, and routing was made in a 25 X 25 grid. In this
test problem, the path length could be manually shortened
in only six of 58 cases. The improvement ratios for the
six cases were less than 3 percent. Fig. 20 shows lthe
routing results obtained by PAR-2 on a D-type flip-flop
circuit with 21 nets and 110 terminals. The AAP-1 exe-
cution time was 1.95 s.

VII. CONCLUSIONS

A new routing algorithm suited for parallel processing,
the parallel adaptable routing (PAR) algorithm, has been
described. The PAR-1 algorithm controls path quality by
changing the expansion distance. It functions as a parallel
line-search or line-expansion algorithm when the expan-
sion distance is set at infinity and as Lee’s algorithm when
the expansion distance is set at unity. A PAR-2 algorithm
for multipoint nets was also proposed which is effective
for optimizing partial-path determinations. The PAR-2
can find a path having a quasi-minimum Steiner tree.

249

The Lee algorithm and the PAR algorithms have been
implemented on an AAP-1 two-dimensional array proces-
sor. The run results show that the Lee maze routing al-
gorithm on the AAP-1 can be executed 100 times faster
than a sequential Fortran program on a 1-MIPS general-
purpose computer, while the PAR algorithm implemented
on the AAP-1 is 230 times faster for a three-pins/net cir-
cuit on 256 X 256 grids.

ACKNOWLEDGMENT

The authors would like to thank H. Mukai, T. Sudo,
and T. Nakashima of the Integrated Electronics Devel-
opment Division for their valuable advice and constant
encouragement. The authors are also grateful to T. Kondo
and T. Tsuchiya for their technical discussions and inval-
uable advice on the AAP-1 and to K. Ueda and H. Mi-
yashita for their thoughtful comments.

REFERENCES

[1] T. Sudo et al., “*An LSI adaptive array processor,”” in ISSCC Dig.
Tech. Papers, Feb. 1982, pp. 122-123.

[2] T. Kondo ef al., ‘‘An LSI adaptive array processor,”” IEEE J. Solid-
State Circuits, vol. SC-18, no. 2, Apr. 1983.

[3] T. Kondo et al., **A large scale cellular array processor: AAP-1,"" in
Proc. Computer Science Conf. '85 ACM, Mar. 1985.

[4] Y. Sugiyama and T. Watanabe, ‘‘Parallel processing of logic module
placement,’’ Electron. Lett., vol. 20, no. 5, pp. 219-220, 1984.

[5] C. Lee, ‘“An algorithm for path connections and its applications,’’
IRE Trans. Electron. Comput., pp. 346-365, Sept. 1961.

[6] D. Hightower, ‘‘A solution to line-routing problems on the continu-
ous plane,’’ in Proc. 6th Design Automation Workshop (Miami Beach,
FA), June 1969, pp. 1-24.

[7] K. Mikami and K. Tabuchi, **A computer program for optimal rout-
ing of print circuit conductors,’’ in Proc. Information Process. 68,
1969, pp. 1475-1478.

[8] W. Heyns et al., ‘*A line-expansion algorithm for the general routing
problem with a guaranteed solution,” in Proc. 17th ACM/IEEE De-
sign Automation Conf., 1980, pp. 243-249.

[9] A. losupovici, *‘Design of an interative array maze router,”’ in Proc.
IEEE Int. Conf. Circuits Comput., Oct. 1980, pp. 908-911.

[10] H. G. Adshead, ‘‘Employing a distributed array processor in a dedi-
cated gate array layout system,’” in IEEE Int. Conf. Circuits Com-
put., Sept. 1982, pp. 411-414.

[11} H. G. Adshead, ‘‘Towards VLSI complexity: The DA algorithm scal-
ing problem: Can special DA hardware help?’’ in Proc. 19th ACM/
IEEFE Design Automation Conf., June 1982, pp. 339-344.

[12] M. A. Breur and K. Shamsa, ‘‘A hardware router,”’ J. Digital Sys-
tems, vol. 4, no. 4, pp. 393-408, 1980.

[13] T. Blank er al., **A parallel bit map processor architecture and al-
gorithms for DA algorithms,’” in Proc. [8th ACM/IEEE Design Au-
tomation Conf., June 1981, pp. 837-845.

[14] R. Nair et al., **‘Global wiring on a wire-routing machine,’” in Proc.
19th ACM/IEEE Design Automation Conf., June 1982, pp. 224-231.

[15] S.J. Hong and R. Nair, ‘‘Wire-routing machines—New tools for VLS
design,”” Proc. IEEE, vol. 71, pp. 57-65, Jan. 1983.

[16] T. Watanabe et al., ‘A parallel maze router,”” unpublished, 1984.

*

Takumi Watanabe (M’86) was born in Fukuoka,
Japan, on October 11, 1956. He received B.E. and
M.E. degrees in electronic engineering from Ka-
goshima University, Kagoshima, Japan, in 1979
and 1981, respectively.

In 1981, he joined the Musashino Electrical
Communication Laboratory, Nippon Telegraph
and Telephone Public Corporation, Tokyo, Japan.
He is now with Atsugi Electrical Communications
Laboratories, NTT, Kanagawa, lapan. He has
been engaged in the research and development of

Authorized licensed use limited to: Yuan-Ze University. Downloaded on October 24, 2009 at 12:39 from IEEE Xplore. Restrictions apply.

250 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. CAD-6, NO. 2. MARCH 1987

logic LSI design automation technologies. His research interests include
parallel processing and computer-aided design, especially in VLSI layout.

Mr. Watanabe is a member of the Institute of Electronics and Commu-
nication Engineers of Japan and the Information Processing Society of Ja-
pan.

Hitoshi Kitazawa (M’85) was born in Nagano,
Japan, on February 5, 1952. He received the B.S.,
M.S., and Ph.D. degrees in electronic engineer-
ing from the Tokyo Institute of Technology, To-
kyo, Japan, in 1974, 1976, and 1979, respec-
tively.

In 1979, he joined the Musashino Electrical
Communication Laboratory, Nippon Telegraph
and Telephone Public Corporation (NTT). He is
now engaged in the research and development of
logic LSI design automation technologies.

Dr. Kitazawa is a member of the Institute of Electronics and Commu-
nication Engineers of Japan and the Information Processing Society of Ja-

pan.

pan.

Yoshi Sugiyama was born in Shizuoka, Japan, on
March 11, 1947. He received the B.S. degree in
electrical engineering from Shizuoka University,
Hamamatsu, Shizuoka, Japan, in 1969.

In 1969, he joined the Electrical Communica-
tion Laboratory, NTT, at Musashino. He is now
engaged in research and development of logic LSI
design automation technologies.

Mr. Sugiyama is a member of the Institute of
Electronics and Communication Engineeers of Ja-
pan and the Information Processing Society of Ja-

Authorized licensed use limited to: Yuan-Ze University. Downloaded on October 24, 2009 at 12:39 from IEEE Xplore. Restrictions apply.

