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Abstrac, t 

A new algorithm is presented which 
calculates Boolean combinations (AND, OR, 
F/OR, AND NOT) between two layers of an 
integrated circuit layout. Input and out- 
put of the algorithm is an edgebased 
description of the set of polygons which 
represent the artwork. The algorithm has 
0 (N log N) time and 0 (~-~) space 
complexity, i.e. it is faster than 
previously published methods. Moreover, 
we believe that it is easier to understand 
and to implement than the previously lead- 
ing method in the field. 

1.  Introduction 

Calculation of Boolean mask combinations 
(AND, OR, EXOR, AND NOT) between dif- 
ferent layers of an integrated circuit is 
a basic procedure in designrule checking, 
connectivity checking and device 

recognition from the layout (see 1,2,5,8 
for applications). Th~s task seriously 
stresses the computational resources 
(cpu-time and storage) of today's com- 
puters: runtimes in the range of tens of 
hours are often reported. It is sometimes 
argued that increasing speed of computers 
and dropping cost of main memory will 
solve these problems, but this argument 
does not hold because the size of lay- 
outs to be analysed increases at least 
as fast as our computational power: We 
have to use today's (if not yesterday's) 
hardware to develop tomorrow's computers. 
The exploitation of hierarchical design 
methodology will not solve this problem 
either unless a large fraction of the 
layout is of a repetitive nature. There- 
fore, instead of calling for the sledge- 
hammer of superfast computers, we should 
look for fast algorithms with modest 
memory needs, ~.e. runtime should grow 
linearly or near linearly with size of ~n- 
put and only a small (sublinearly growing) 

fraction of the layout should be held in 
main memory. An algorithm with these 
characteristics will be presented in this 
paper. 

2. Model of computation 

To evaluate previous and our owr. work we 
make some assumptions about the compt~- 
rational environment and the rata to be 
handled: 
We assume a general purpose computer with 
a fairly limited main memory allowing 
fast random access and a practically un- 
limited peripheral storage, for which 
fast access is possible only in a set'a3. 
manner. Typically, it is not possible to 
keep the whole layout to be processed in 
main memory. As part of the programming 
environment we assume an external sort 
package which works with time comlexity 
0 (N log N) if N denotes input s l~_z~ , as 

15 
it is state of the art 
The layout to be processed is stored as 
a set of polygons per layer which specify 
the opaque regions. These regions are 
bounded by straight !lnes (the po!ygon 
edges) which may have any slope. (We do 
not restrict ourself to orthogonal or 

n'45 ° artwork.) Polygons may contain 
"doughnut holes" either by selfoveriapD- 
ing or by explicit description of these 
windows. Polygons (and Jf appropriate) 
windows are described by a sequence of 
points defining the polygon edges. Po~3r- 
gon edges are oriented in a way that the 
opaque part of the layer lies always o~: 

the right side of the edge. The total 
number of edges in the completely inter- 
sected edge set (to be defined below) is 
denoted by N. 
We use the usual 0 - notation to describe 
time and space complexity of a]gorith!ns: 
a function g (n) is said to be 0 (f (n) 

if exist constants c, n o such 
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that g ( n ) < c'f ( n ) for all n>n o . 

To simplify complexity considerations we 
assume that for a given technology the 
number S of different x-coordinates is 
0 (~ and that the average number H of 
polygon edges crossing a vertical cut 
through the layout is also 0 (q~-~). To 
justify these assumptions let us make the 
following experiment: 
Let a given chip contain N edges in the 
completely intersected edge set. If we now 
double the chip in x-direction then the 
numbers N and S will also double but the 
number H will not change. If we double 
again - now in y-direction - then N and 
H will double, but S will (asymtotically) 
stay constant due to the gridded structure 
of layouts. ( For a random districution of 
points over the length of the chip we 
would get S = S O ( I - e-2N/So ), 

S~ beeing the maximal possible value of 
SUfor a given chip length. In real lay- 
outs we may expect an even faster 
saturation of S. ) 

To summarize, we increased N by a factor 
of 4 and both S and H were doubled; so we 
may assume S and H to be 0 (~) . 

3. Previous work 

Basically two different approaches are 
generally used for the calculation of 
boolean mask combinations: The bit map 
approach and edgebased methods.2, 6 
In the bit map approach ( see for 
instance ) the layout of each mask is 
mapped into a twodimensional matrix of 
bits which represent transparent or opaque 
grid points of the layout. On most compu- 
ters basic instructions such as OR, AND, 
EXOR can be used to calculate boolean 
combinations between these matrices. The 
method is conceptually simple and has time 
and space complexity 0 ( N ) on conven- 
tional computers, but with a large factor 
hidden in theTO - notation. Compression 
techniques can be applied to reduce 
the storage needs. A special bit map 14 
processor has recently been presented 
which would reduce time complexity to 
0 (1) but this methods seem not to be 
practical in near future. 

A major drawback of the bit map approach 
is the difficulty of dealing with 
nonorthogonal artwork. 
These problems are avoided in edgebased 
methods: Here the polygons of which the 
layout is composed are represented by a 
list of edges. Basic steps of applied 
algorithms are: 

step 1 calculation of all intersections 
between polygon edges and split- 
ting of edges at intersection 
points; as result of this step 
no two edges intersect other 
than at endpoints of edges (the 
set of edges is "completely in- 
tersected") 

step 2 decision, which subset of the 
completely intersected set of 
edges is visible (i.e. repre- 
sents a boundary between opaque 
and transparent regions) on the 
output mask ( true edges ) 

step 3 reconstruction of polygones from 
the list of true edges; this 
poses no special problems, but 
will not be discussed here 

Figure I shows for a simple example 
(boolean OR between two rectangles) the 
set of input edges, the completely inter- 
sected set of edges and the subset form- 
ing the boolean OR. 

The two steps above can be applied to a 
pair of polygons at a time or to the 
whole set of edges in the two layers con- 
sidered. The crucial point in step one is 
to organize the search for edge inter- 
sections in a way that excessive runtime 
is avoided ( the naive approach of test- 
ing each edge against each other for 
intersection yields a prohibitive 0 ( N 2) 
time complexity). 

Various methods have been applied for 
step two. The basic idea is to trace 
along the edges of one of the polygons 

9,10 or along a set of scanlines 13 
accumulating enough topological infor- 
mation to classify all edges in the 
completely intersected set. 

An edge based algorithmawas first des- 
cribed by Yamin 10 J, and similarily 
by Szanto . In both papers a pair 
of polygons was considered and the issue 
of time complexity was not discussed. 

Baird 3,4 described a set of procedures 
which work on the set of all edges of the 
layers considered. He used the concept of 
sorting lwhich was already folklore to 
his time) to cut down the expected time 
complexity of intersection calculation to 

( N 1.5 ) and devised a sophisticated but 
not easily to understand algorithm to 
determine the role which each edge plays 
on the output mask. This topological 
analysis worked on the set of edges in- 
cident to the currently processed point, 
which was stepped through the layout from 
left to right and from bottom to top in 
lexicographical sorted of x and y. 
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Some topological decisions had to be 
postponed until the total layout was 
processed. The expected~ace complexity 
of his algorithm is 0 (q-NO. 

Recently, an algorithm for reporting all 
intersections between straight lines in 
the plane has been described by Bentley 

and Ottmann 12 basing on previous work 

by Shames and Hoes 11 which has 
0 (N log N) worstcase time complexity. We 
will use a simplified version of this 
method, enhanced by an additional 
scanning procedure for classification of 
output edges to solve our problem. Let us 
first - in the next section - shortly re- 
call the Bentley - Ottmann a]gorithm. 

4. The Bentley - Ottmann algorithm 

The main idea in this algorithm is, to 
sweep a vertical scanline from left to 
right through the plane. The scanline 
defines a vertical order on the line 
segments crossing it. Only such segments 
which at some time are adjacent in this 
order can intersect each other and have 
therefore to be checked for intersection. 
The algorithm uses two datastructures Q 
and R. Q contains initially all segment 
endpoints and later on also the cross- 
points between segments. The entries in 
Q are sorted according to x. R contains 
the segments which currently cross the 
scanline and is ordered according to the 
y - values of these segments at the 
current position of the vertical scan- 
line. Sweeping the scanline through the 
plane is implemented by processing the 
points of Q in x - order: If the point 
being processed is the startpoint of a 
segment, the segment is inserted into R; 
if it is an endpoint, the pertinent 
segment is deleted from R; if it is a 
crosspoint, the two pertinent segments 
are adjacent in R and have to be inter- 
changed. ~enever two segments become 
adjacent in R (during insertion, deletion 
or interchange) they are checked for 
intersection and the intersection point 
is added to Q (if not already in O). 
For each point of O being processed at 
most two such checks occur. 
Operations on Q are INSERT, DELETEMIN 
and MEMBER, those on R are INSERT and 

DELETE (see 16 for nomenclature). 

If appropriate datastructures are used, 
the total runtime is 0 (N log N). 
Vertical line segments and the case of 
more than two lines crossing at one point 
pose problems which have not been handled 

in detail in 12. We will see below that 
for our application these are nonproblems. 

5. Complete intersection, a new technique 

As pointed out earlier, we have to solve 
two problems: To find all intersections 
between input edges and to classify the 
edges in the completely intersected set 
for output. To solve the first problem, 
we modify the Bentley - 0ttmann 81gorithm: 
We are interested only i~ such edge 
intersections which truely spilt at least 
one of the two edges. (Other edge in- 
tersections are the polygon nodes already 
known). To circumvent problems with 
vertical se~nents, these are omitted from 
the input; we will see later, that the 
significant vertical edges can easily be 
reconstructed. 
If a true intersection between two edges 
is detected, we will immediatly split the 
pertinent edge(s) thus avoiding the 
operation of swapping entries in the 
vertical order. 
The algorithm uses four datastructures 
EDGEFILES, QUEUE, OLDSCANLINE and NEW- 
SCANLINE. EDGEFILES is a set of peri- 
pheral sequential files (one per layer) 
containing a]l nonvertical input edges 
sorted according to lexicographic order 
of the x- and y-values of their leftmost 
endpoint and their slope. QUEUE is a 
mainmemory datastructure containing 
edges to be processed and allows for 
MIN, INSERT and DELETP~II~ operations, 
maintaining the same order as on 
EDGEFILES. QUEUE ~s used to buffer iz~- 
putedges coming from E[~EFII.ES and new 
edges resulting from s~litting. A proce- 
dure NEXTEDGE delivers and deletes the 
next edge from QUEUE and - if this edge 
had come originally from EDGEFILES - 
transfers the next edge (if any) from 
the respective file to QUEUE. OLDSCANLINE 
and NEWSCANLINE are linear lists contain- 
ing all segments crossing associated 
scanlines in vertical order. 

We are now ready to describe our algo- 
rithm in pseudo code: 

* Bentley and Ottmann suggest a balanced 
binary searchtree for R and a heap for 
Q, but the latter seems not to be 
sufficient, due to the MEMBEI~ operations 
needed on Q. 
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begin 

initialize EDGEFILES; (the input poly- 
gons are decomposed into edges which 

are stored - one edge a record - on 
peripheral files and sorted. No 
vertical edges are generated.) 

initialize QUEUE; (the first edge from 
each of the two layers to be 

processed is inserted into the empty 
QUEUE.) 

Xo:=Xleft(MIN (QUEUE)); (position of 

first scanline) OLDSCANLINE:= empty; 
repeat 

(set up new scanline :) 
NEWSCANLINE:=empty; 
while Xleft(MIN (QUEUE)) =x o do begin 

NEXTEDGE (e); INSERT (NEWSCANLINE,e) 
end; 
(update OLDSCANLINE:) 
for all edges in OLDSCANLINE calculate 
the y-value at x = Xo; 

(the vertical order in OLDSCANLINE 
is not affected by this step. 
We now have two lists of edges 
crossing the current position x~: 
OLDSCANLINE containing "inherited" 
edges and NEWSCANLINE containing all 
edges starting at x = x o) 

merge lists OLDSCANLINE and NEWSCAN- 
LINE into a common list OLDSCANLINE" 
preserving vertical order. Whenever 
during the merge two edges become 
adjacent and at least one of them is a 
new edge, then call the procedure 
INTERSECT; 
OUTPUTTRUEEDGES: (this procedure is 
described later~ 
delete all edges from OLDSCANLINE 
which end at the current position Xo; 

Whenever during deletion two edges be- 
come adjacent, then call the procedure 
INTERSECT; 
(determine position of next scanline:) 
Xo:= ~ ; 
for all edges in OLDSCANLINE do Xo:= 

min (Xo,Xright(edge)); 

Xo:=min (Xo,Xleft(MIN (QUEUE))); 

until Xo=~ ; 

end; 

The procedure INTERSECT checks two edges 
for true intersection; if intersection 
occurs, the respective edge(s) is (are) 
split. Keeping the left part(s) in OLD- 
SCANLINE, the right part(s) is (are) in- 
serted into QUEUE. 
The process of scanline maintenance is 
illustrated in Fig. 2. OLDSCANLINE con- 
tains the edges 1,2 and 3. Edges a, b and 
c are inserted into NEWSCANLINE. After 
merging the sequence is a, b, c, 2, 3. 

The pairs (a,b), (b,1~, (I,c) are checked 
and the intersection (b,1) is detected. 
Due to deletion of edge 2 the pair (c,3) 
becomes adjacent and leads to detection 
of another true intersection. 

The data flow of the algorithm is shown 
in Fig.3. 

As far as the algorithm has been described 
it solves the first problem, to bring the 
set of edges into completely intersected 
form. 

6. Classification of edges for output 

The second problem - classification of 
edges for output - can also be solved 
using the scanline concept: For this 
purpose, with each edge we keep in- 
formation about the layer from which it 
came and about its direction (forward, 
backward). 
If we scan a scanline from top to 
bottom (using the list OLDSCANLINE after 
completion of the merge) we can easily 
maintain two counters COUNT representing 
the "opaqueness" in the two layers and a 
logical variable BLACK indicating the 
state of the layer combination. The two 
counters are initialized with zero at the 
top of the scanline and increased 
(decreased) when a forward (backward) ed- 
ge is crossed in the pertinent layer. At 
any time the color of the mask combi u 
nation is defined as 

BLACK =(COUNT[layer~ > O) op 
(COUNT[layer2] > O) 

with op =v,A,A~,~ for the OR, AND, AND 
NOT,EXOR operation. 
Whenever the value of BLACK changes, we 
have crossed a true edge. True edges 
which end at the current position are 
passed to output. 
The scan described is executed simultan- 
eously "along the left side" of the scan 
line (taking into account crossing and 
ending edges) and "along the right side" 
(taking into account crossing and starting 
edges). If the two scans deliver different 
BLACK values, then a vertical edge is 
existent on the output mask. Vertical 
edges also are passed to output when they 
end. 

7. Comlexit¥ of the algorithms 

We will discuss complexity in terms of N, 
the number of edges in the completely 
intersected edge set. (It makes no sense 
to discuss complexity in terms of the 
number of input edges because one can 
easily construct examples where M input 

edges generate 0 (M 2) intersections. Every 
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sequential algorithm then would take at 

least 0 (M 2) steps.) 
We have to look at the implementation of 
datastructures to analyse the complexity 
of the algorithms: 
EDCEFILES is kept on peripheral storage 
and the associated sort takes 0 (N log N) 
time. 

Operations on QUEUE are INSERT, DELET[~IN 
and INSPECTMIN. This csn conveniently be 

done with a leftist tree 15,17 • Each edge 
from the completely intersected edge set 
is exactly once inserted and deleted. 
This also takes 0 (N log N) time 
(worst case). 

On OLDSCANLiNE and NEWSCANLINE we have 
insertions only at the front of the list, 
merging of two lists and deletions during 
a sequential scan thru the list. There- 
fore, a simple linear linked list 
structure is sufficient. 

The time spent for intersection checks is 
linear in N because each edge is checked 
at most two times during insertion and 
may cause one additional check at 
deletion. This also is clearly a worst 
case bound. 

The time for maintenance of the s c a n l i n e s  
is linear in H~S where II is the average 
number of entries per scanline and S is 
the number of different scanlines. From 
the assumptions discussed in section 2 
follows that H.S is 0 (N). Therefore the 
time for scanline maintenance is 0 (N) 
exept for the QUEUE-operations. 

The same holds for the vertical scan 
operations in the procedure OUTPUTTRUE- 
EDGES. Both these estimations are 
e x p e c t e d time complexities. 
Thus the overall expected time complexity 
is 0 (N log N). 
The expected space complexity is 0 (~q~), 
since we keep only the SCANLINES and 
QUEUE in main memory. 

8. Implementation and results 

The algorithms described here are beeing 
implemented on a SIEMENS mainframe com- 
puter (paged memory ,Itimesharing oper- 
ating system, about Mops) in Pascal. 
The problem calls for very careful coding 
to avoid trouble caused by rounding 
errors. 

The table below shows some results ob- 
tained for the two examples in V ig .  4. 

Sample 4 a 4 b 
Operation AND AND 
Number of 

input edges I00 I00 
intersections 0 240 
nonverticai 
sections (N) 50 3[56 
intersection checks 55 880 
checks per section 1.1 2.6 
scanlines 11 ~3~ 
sections per scan- 
line (average) 32.5 40 
sections in QUEUE 
(max/aver.) 3/2. U4 7/J:'. 52 
output edges 240 2&0 

Time[se~ cpu for 
macro expansion 
and decompo- 
sition ~nto edges 0.30 0.31 
sorting 1.01 1.13 
Boolean operation 0.23 4.90 

Memory needs[kbyte] L4 & 

The number of intersection checks is in 
both samples well below the theoretical 
bound of 3 N. 

9. Conclusions 

A new algorithm for Boolean mask oper- 
a ~ ] o n s  has  been  p r e s e n t e d  which  i s  f a s t e r  
and ( h o p e f u l l y )  e a s i e r  t o  u n d e r s t a n d  t h a n  
p r e v i o u s l y  p u b l i s h e d  edge b8sed  
algorithms. 
We will give more experimental results in 
the oral presentation. 
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Fig, I 
Boolean OR between two rectangles. 
a) Input 
b) Completely intersected edge set 
c) True edges (bold) 

C',) - 

[i 

' 3 i 

I I 

I I 
I i 
I i 
I 

. f  
I 

I 6 

I 
I 

OLD SCANLINE NEW 

Fig. 2 
l set of edges and two scanlines 

~RY@UT DRTR~ 
OECOM~OSITION INTO 1 

EOGES qNO SORT ! 

÷ 

LED EFILES  
! NEW EDGES 

I STARTING EDGES 

STARTING EDGES \ 
~ LDSCANL I NE~ 

INHERITEO EDGES , /  
! 

BPLITTET EDGES 

SPLITTET EDGES 

I MERGE I 
EDGES CROSSING iCURRENT SCANLINE 

CLASSIFICATION 
OF EDGES 

I 

DELETE 

ENOING EOGES 

TRUE EDGES 

Fig. 3 
Data flow of the algorithm for Boolean mask operations 
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Two sets of test data 
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