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Algorithms for Reporting and Counting

Geometric Intersections
JON L. BENTLEY, MEMBER, IEEE, AND THOMAS A. OTTMANN

Abstract-An interesting class of "geometric intersection prob-
lems" calls for dealing with the pairwise intersections among a set of
N objects in the plane, These problems arise in many applications
such as printed circuit design, architectural data bases, and computer
graphics. Shamos and Hoey have described a number of algorithms
for detecting whether any two objects in a planar set intersect. In this
paper we extend their work by giving algorithms that count the
number of such intersections and algorithms that report all such
intersections.

Index Terms-Computational geometry, geometric intersection
problems.

I. INTRODUCTION
M/[ANY fascinating aspects of "geometric intersection

problems" have been brought to light in the recent
study of Shamos and Hoey [7]. They investigated many
different problems defined on sets of planar objects such as
"do any two objects intersect?".
They pointed out that such problems arise in printed

circuit design (do any conductors cross?), architectural data
bases (are two items in one spot?), and operations research
(linear programming can be reduced to an intersection
problem). Shamos and Hoey have given many optimal
algorithms in their paper both for detecting and forforming
intersections of many different classes of objects.

In this paper we answer some ofthe open questions raised
by Shamos and Hoey by solving problems of the form
"report all intersecting pairs ofobjects" and "how many pairs
intersect?". For example, we will give a fast algorithm for
reporting all intersecting pairs among a set of N line
segments in the plane. This problem arises in integrated
circuit design, for crossovers must be placed at all such
intersecting points (see, for example, [1] or [4]). In this
application (and many others) it is critical that all such pairs
be reported.

In Section II of this paper we will study an algorithm due
to Shamos and Hoey for determining whether any pair of a
set of line segments intersect, and then generalize their
algorithm to report all intersecting pairs. In that section and
the following we will assume that the reader is familiar with
Shamos and Hoey [7]. In Section III we will see how to
modify the algorithm of Section II to solve many other
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problems calling for reporting all intersecting pairs ofplanar
objects. In Section IV we return to a special case of planar
line segments, namely when all such segments are either
horizontal or vertical. This case does arise in applications,
and our algorithm for reportingall intersecting pairs ofsuch
segments is faster than for the general case (indeed, it is
optimal). We also solve the problem ofcounting how many
intersections there are in such a set. We give directions for
further work and conclusions in Section V.

II. INTERSECTION OF LINE SEGMENTS
In this section we will examine the problem of "given N

line segments in the plane, report all intersecting pairs." We
will investigate this problem by first describing an algorithm
due to Shamos and Hoey [7] for detecting whether any ofthe
segments intersect, and then we will modify that algorithm
to report all intersecting pairs. In this paper we will not
carefully describe certain important points such as the
representation of line segments and algorithms for deciding
if a point is above or below a given segment; we assume that
the reader is familiar with Shamos and Hoey [7], where these
details are discussed. Throughout this section we will make
the assumptions that no segments in the set we are to process
are vertical and that no three segments meet at any one
point-to confront the details for handling these situations
is cumbersome and not particularly illuminating.1
We will now briefly review Shamos and Hoey's algorithm

for determining if any two of a set ofN line segments in the
plane intersect. The basic process of their algorithm "draws
vertical lines" through the endpoints of segments in the set.
They make the crucial observation that the positions at
which the different segments intersect a given vertical line
define a total ordering on those segments (the "above-
below" ordering), and if the segment set is free of intersec-
tions then the relative ordering of any particular pair of
segments will be the same at all vertical lines. (Note that if a
line segment A is above segment B at one vertical line and B
is above A at another, then they must have crossed, or
intersected, somewhere between the two vertical lines.)
Once we have observed that there is a natural order

1 The problem of vertical line segments can be solved by rotating the
segment set a few degrees, ensuring that no line is vertical. This can be
accomplished in linear time. The problem of many lines intersecting at one
point is more subtle. In Algorithm 2.1 it is immaterial; that algorithm is
concerned only with detecting whether-thereis-ainter-sW ionlnS"tion
IV we discuss how Algorithm 4.1 can be modified to deal with the prob-
lem. Algorithm 2.2 can also be so modified by noticing that if many
segments intersect at one point, then they will all be adjacent in R when
that point is scanned.
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relation on sets of line segments with respect to any given
vertical line it is easy to describe Shamos and Hoey's
algorithm. The main loop of the algorithm "sweeps" a
vertical line left-to-right through the set of segments, stop-
ping at each endpoint (this is implemented algorithmically
by sorting the 2N endpoints in an array and then sequen-
tially scanning through it). At each point during this sweep
we maintain the segments which intersect the vertical line
defined by the current x-value, stored in the order relation of
the segments with respect to the vertical line. As a left
endpoint is encountered during the sweep we insert the
segment into the ordering and as a right endpoint is
encountered we delete it from the ordering. Whenever we
insert a segment into the ordering we compare it against
both of its "top" and "bottom" neighbors in the relation and
when we delete a segment we compare the newly adjacent
segments-if a given segment intersects any segment then it
intersects one of those. Once such an intersection is found
the algorithm reports it and halts; if no such intersection is
found then none exists among the segments.
The correctness of this algorithm; has been proved by

Shamos and Hoey. They showed that if the order relation R
among line segments is maintained as a balanced tree, then
the running time of the algorithm is O(N lg N). We include a
pseudo-Algol description of their procedure as Algorithm
2.1.

Q +- the set of all endpoints of segments, stored in order by
x-values

R +- // R is the order relation of segments currently
examined

FOREACH endpoint p in Q (in ascending x-order) DO
IF p is the left endpoint of segment s THEN insert s in R;

check if s intersects the segments directly above
or below it, and return that pair if it does

ELSE // p is the right endpoint of s
check if the segments directly above and below
s intersect, ifso return that pair; delete s from R.

Algorithm 2.1: Determine ifN planar segments intersect.
We will now -examine the more general problem of

reporting all intersecting pairs, rather than just saying
whether or not there is at least one such pair. This problem
was posed by Shamos and Hoey, who asked ifthere exists an
algorithm to do this in time O(N lg N + k), where k is the
number of intersecting pairs. They showed this time com-
plexity to be a lower bound on the problem. We cannot
answer their question directly, but we can modify their
algorithm to solve this problem in time O(N lg N + k lg N).
The correctness ofShamos and Hoey's algorithm is due to

the fact that if two segments intersect then at some time they
must become adjacent in the vertical ordering. We will now
show how this fact allows us to construct an algorithm for
reporting all intersecting pairs of segments. We do this by
"sweeping" a line through the point set (as before), always
maintaining the correct vertical ordering in set R (as before),
and then checking whenever modifying R to see if newly
adjacent segments ever intersect (as before). Thus the algor-
ithm we will present is substantially the same as Shamos and

Hoey's original, but modified to maintain the correct total
ordering on the segments even after an intersection is found.
Note that if two segments are determined to intersect
(somewhere to the right of the current scan position), then
they will be in the correct order up to the intersecting point
and at that point they should be "swapped" in the order.
Having made this observation it is trivial to modify Shamos
and Hoey's algorithm. They updated the order R at the
"critical" times ofentering and leaving the line segments. We
will additionally update R at the "critical" time of segment
intersection. Our modified version of Shamos and Hoey's
algorithm is presented in pseudo-Algol as Algorithm 2.2.

Q - the set of all endpoints of segments, stored in order by
x-values;

R -; // The order relation among segments
FOREACH point p in Q (in ascending x-order) Do

IF p is the left endpoint of segment s THEN
insert s in R;
check if s intersects the segments immediately

above and below it and if it intersects segment
t then insert the intersection point of s and t
into Q (in x-order)

ELSE IF p iS the right endpoint of segment s THEN
IF the intersection point ofthe pair ofsegments

directly above and below s is not in Q THEN
check them for intersection and if they meet
then add their intersection point to Q (in
x-order);

delete s from R
ELSE //p is the intersection of segment s and t

report the pair as intersecting; swap the
positions of s and t in R

(notice that they were and still are
adjacent);

check the upper segment (say s) for intersec-
tion with the segment above it, the lower
(t) with segment below it, and add any
intersection points to Q

Algorithm 2.2: Report all intersections among N planar
segments.
The correctness ofAlgorithm 2.2 follows from the fact that

the total ordering R of segments is correctly maintained at
all times. The details of the, proof are analogous -to the
argument in Theorem 2 of -Shamos and Hoey [7]. To
implement the algorithm efficiently we can store R as a
balanced tree and Q as a heap. As before, we assume that
there are k intersecting pairs. The number of times the
FOREACH loop ofAlgorithm 2.2 is executed is exactly 2N + k.
Since the total order R can never contain more than N
segments each operation on R within the FOREACH loop can
be performed in O(lg N) time. The cost ofeach priority queue
operation on Q is O(lg [2N + k]) = 0(lg N) (since k < N2) if
Q is represented by a heap. We thus see-that a cost of0(lg N)
is incurred at each of the O(N + k) iterations through the
loop, so the total running time of the algorithm is
O(N Ig N + k Ig N). Note that if k is very close to N2 then
the running time ofour algorithm is actually greater than the
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O(N2) time of the "naive" algorithm that checks all (2) pairs
for intersection.

III. A GENERAL ALGORITHM
In their paper Shamos and Hoey showed how the algo-

rithm they give for detecting intersection among line seg-
ments can be modified to detect intersection among sets of
many different kinds of objects. In this section we will show
how our algorithm for reporting all intersections among line
segments can be modified to report all intersections among
sets of many different kinds of objects. We will explore this
facet of our algorithm by first mentioning general properties
of objects sufficient for the correctness of our algorithm
when applied to a set of such objects, and then use the
general construction to solve a particular problem.

Algorithm 2.2 depended on three properties of line seg-
ments for its correctness. It can also be used to solve
intersection problems on other objects as long as those
objects display the following three properties.

Property P1: Any vertical line through the- object inter-
sects the object exactly once.

Property P2: For any pair ofobjects intersecting the same
vertical line it is possible to determine algorithmically (at
constant cost) which- is above the other at that line.

Property P3: Given two objects it is possible to determine
algorithmically if they intersect, and if so to compute their
leftmost intersection point after some fixed vertical line.

Property P1 ensures that an order relation R will exist for
any vertical line and Property P2 ensures that the relation
can be computed. Property P3 is used by Algorithm 2.2 as it
adds intersection points to Q; the leftmost intersection point
after the current scan position is the one whih should be
added. So we see that if a class of objects C his Properties
P1-P3, then we can report all intersections among a set of
C's by modifying Algorithm 2.2 to read "C" whenever it
reads "segment." The running time of the modified algo-
rithm is still O(N lg N + k lg N).
An example ofa clas's ofobjects displaying the above three

properties are circular arcs in the plane, restricted to exclude
arcs which include a point with no derivative. (Note that an
arc with such a point can be represented by two'arcs without
this property by "breaking" the arc into two at the place
where the slope becomes vertical.) Such arcs can be
described mechanically by giving a circle -(center and
radius), two x-values defining the endpoints of the arc, and
one bit saying whether we are considering the upper or lower
part of the circle within the specified x-slab. We have
guaranteed that Property PI is satisfied by excluding arcs
that are both concave up and concave down. It is a trivial
programming problem to design an algorithm showing that
Properties P2 and P3 are both satisfied. This establishes the
fact that 0(N lg N + k lg N) time is sufficient for reporting
all k intersecting pairs among a set of N circular arcs in the
plane.
One application of the above algorithm-'for determining

arc intersection is the problem of "Euclidean fixed-radius
near neighbors." In this problem we are givenN points in the
plane and then asked to report all pairs of points within
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some distance d of one another by the Euclidean metric.
Notice that two points are within distance d ofone another if
and only iftwo circles, each centered at one ofthe points and
both with radius d/2, intersect. Thus, we can find all near
neighbors by considering each point in the set to be the
center of a circle of radius d/2 and then reporting all
intersecting circles. (Note that we will have to "break" each
circle into its top and bottom halves, however.) This gives an
O(N Ig N + k lg N) solution to the near neighbor problem.
This same algorithm can also be used to report all intersec-
tions among a set of circles of varying radii.

IV. INTERSECTIONS OF HORIZONTAL AND
VERTICAL LINE SEGMENTS

In this section we consider the special case of planar line
segment intersections in which each of the N given line
segments is either vertical or horizontal. The problem of
finding all intersecting pairs in a set of horizontal and
vertical line segments arises in many applications. When
designing an integrated circuit conductors are often res-
tricted to horizontal and vertical lines; detecting all cros-
sings of conductors calls for finding all intersecting pairs of
vertical and horizontal line segments. Rectilinearly oriented
squares and rectangles are built from vertical and horizontal
line segments. Thus, an algorithm for finding intersecting
pairs of vertical and horizontal line segments can be used to
detect all (properly) intersecting pairs of squares and rec-
tangles. Finally, we will show how the "L. fixed radius near
neighbors" problem (which asks for all pairs ofN points in
the plane within some fixed distanced ofone another) can be
solved efficiently by this algorithm, if the distance is
measured by the L. metric.

In order to simplify the presentation of the algorithm and
to clarify the discussion we first restrict the input to the case
where no line segments overlap. All x-values ofvertical lines
and left and right endpoints of horizontal lines are pairwise
distinct. We will later mention how to handle these cases. In
the problem of interest we are given N vertical or horizontal
line segments in the plane. Each vertical line segment A is
specified by its x-coordinate x(A) and the y-values of its
lower and upper endpoints bot(A) and top(A). Each
horizontal line segment is similarly specified by its y-
coordinate y(B) and by the x-values of its left and right
endpoints left(B) and right(B). We- will let M be the set of
x-coordinates

M = {x(A) A vertical} u {left (B) B horizontal}

u {right (B) B horizontal}.

Note that M has at most 2N elements.
The main loop of our algorithm sweeps a vertical line

from left to right through the set M. We use a data structure
R to store horizontal line segments currently intersecting the
vertical lines ordered by their y-coordinates. Initially R is
empty. Whenever a left (respectively right) endpoint of a
horizontal line segment S is scanned S is inserted into
(respectively deleted from) the structure R. When a vertical
segment is encountered during the sweep we check for



IEEE TRANSACTIONS ON COMPUTERS, VOL. c-28, NO. 9, SEPTEMBER 1979

intersection with horizontal line segments in R.We describe
this algorithm in pseudo-Algol as Algorithm 4.1.

Q the set M in ascending x-order (stored in such a way

that for each p in Q we can recognize to which line
segment p belongs and whether p is the x-value of a

vertical line segment or the left or right endpoint of a
horizontal segment).

R //.The order relation among horizontal line seg-

ments (ordered by y-values)
FOREACH p in Q (in ascending x-order) DO

IF p is the x-value of the left endpoint of a horizontal
line segment S THEN insert S in R

ELSE IF p is the x-value of the right endpoint of a

horizontal line segment S THEN delete S fromR
ELSE // P is x-value of a vertical line segment S

determine A = successor (bot (S), R),
the least y-value greater than or equal
to bot (S) in R;

determine B = predecessor (top (S), R), the
greatest y-value less than or equal to
top (5);

FOREACH horizontal line segment T occurring
in R between A and B do RETURN (S,
T) as an intersecting pair.

Algorithm 4.1: Report all intersecting pairs of N planar
horizontal and vertical line segments.

It is easy to see that Algorithm 4.1 correctly finds all
intersecting pairs of line segments: Whenever a vertical line
segment S is considered R contains exactly the horizontal
line segments crossing the vertical line x = x(S)= p

(ordered by y-values). The algorithm then reports all pairs
(S, T) where T crosses S. The data structure R can be
implemented as a balanced tree. Hence, the time to perform
the operations- insert, delete, successor and predecessor is
0(log N). Reporting the intersecting pairs can be done in
time proportional to their number if we use an appropriate
implementation of balanced trees. Brother (leaf-search)
trees of Ottmann and Six [6] (see van Leeuwen [5] for an

English exposition), for example, can be used for this task
where the leaves of the tree are kept in a doubly linked list.
The structure Q can be implemented as a sorted linear list.
Sorting the elements ofM and storing them in increasing
order takes time O(N log N). Hence, the total performance
time of the algorithm is O(N log N + k) where k denotes the
number of intersecting pairs.
To simplify the presentation ofAlgorithm 4.1 we assumed

that no pair of line segments share endpoints or lie on the
same line, but these assumptions can be removed by increas-
ing the "bookkeeping" performed by the algorithm. To
handle the case that endpoints of segments might intersect
other segments we must be careful to process "multiple
events" at a vertical line during the sweep in the order "insert
new horizontal endpoints," "check vertical segments,"
"delete old horizontal endpoints." We must also report any
pair of vertical (likewise horizontal) segments that meet-
this can be accomplished before the main body ofAlgorithm
4.1 is ever invoked. We will sketch the procedure for
detecting overlap among pairs ofhorizontal lines; the case of

vertical lines is exactly the same. We first sort all horizontal
seginents by y-value and then consider only "clusters" of
segments sharing the same y-value. Within each cluster we
sort the endpoints by x-value, and a scan through the
resulting list can report all overlapping pairs in time propor-
tional to their number. Neither of the special cases we have
just sketched alters the O(N log N + k) running time of
Algorithm 4.1.
We now briefly describe how to modify Algorithm 4.1 for

counting the number of intersecting pairs ofN horizontal or
vertical line segments (without reporting them). We asso-
ciate a counter with each element A in R which indicates the
number of elements preceding A in R. Whenever the sweep-
ing vertical line encounters a vertical line segment S we
determine A = successor (bot (S), R) and B = predecessor
(top(S), R); the number of horizontal line segments inter-
sected by S is the difference between the counter ofB and the
counter of A. This number is added to the total number of
intersecting pairs found so far. In a balanced tree counters
can be updated after an insertion or deletion in time
O(log N).2 The modified algorithm will therefore report the
total number of intersecting pairs after O(N log N) steps,
which is optimal.

Finally, we apply Algorithm 4.1 to solve the "L. fixed
radius near neighbors" problem. In this problem we are
given N points in the plane and asked for all pairs of points
within some distance d of one another by the L4 metric (i.e.,
the maximum coordinate metric). The crucial observation is
that two points are within distance d of one another if and
only if two squares of side length d and with sides parallel to
the coordinate axes, each centered at one of the points,
intersect. Hence, for finding all pairs of near neighbors we
surround each point with a square centered at that point
(with side length d and sides parallel to the coordinate axes).
Then we use Algorithm 4.1 for reporting all pairs of inter-
secting squares. This gives an O(N log N + k) solution to the
"L., fixed radius near neighbors" problem. The same result
was obtained in a totally different manner by Bentley et al.
[2]. This algorithm can also be used to find all edge
intersections among any set of rectilinearly oriented
rectangles.

V. CONCLUSIONS
We will now briefly summarize the research described in

this paper. In Section II we showed how Shamos and Hoey's
algorithm for detecting whether any two of N planar line
segments intersect can be modified to report all such inter-
secting pairs; the running time of the resulting algorithm
was O(N lg N + k lg N). In Section III we modified the
algorithni of Section II so it can report all intersections in
planar sets composed ofmore complicated objects than line
segments; the running time of the algorithm was not
changed. We then examined a special case of line segments
(when each is either horizontal or vertical) in Section IV and

2 This involves storing in each node P a RANK field telling P's rank in its
subtree (that is, one plus the number of nodes in P's left subtree). For the
details of this scheme see Knuth's discussion in [3, pp. 463 ff.].
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showed how all intersecting pairs in such a set could be
reported in O(N Ig N + k) time and counted in O(N Ig N)
time. Both of those performances are optimal. The existence
of these algorithms partially answers a numnber of questions
posed by Shamos and Hoey. These algorithms are parti-
cularly interesting because they are among the first geo-
metric algorithms with complexity described not only as a
function of the problem input size, but jointly as a function of
problem input and output sizes.
A number of geometric intersection problems remain

unsolved. The most outstanding open problem is Shamos
and Hoey's question ofwhether all k intersections amongN
line segments can be reported in O(N Ig N + k) time. (Per-
haps one reason that our algorithm fails to meet that bound
is that it reports the intersection points sorted by x-value;
this might in itself require O(k Ig k) time.) Another inter-
esting open problem deals with finding intersections in a set
of rectangles; this problem arises in integrated circuit design
(see [4]). Although Algorithm 4.1 can be used to find all pairs
that have intersecting edges, it will not report as intersecting
one rectangle that lies totally within another. It is not clear
whether the methods described in this paper can be used to
solve this "rectangle inclusion" problem. The reader in-
terested in further open problems may consult the list given
by Shamos and Hoey [7]. Perhaps some of the methods we
have used in this paper can be applied to those problems.
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