
IEEE TRANSACTIONS ON COMPUTERS, VOL. C-29, NO. 7, JULY 1980

An Optimal Worst Case Algorithm for

Reporting Intersections of Rectangles

JON LOUIS BENTLEY, MEMBER, IEEE, AND DERICK WOOD

Abstract-In this paper we investigate the problem of reporting all
intersecting pairs in a set of n rectilinearly oriented rectangles in the
plane. This problem arises in applications such as design rule checking
of very large-scale integrated (VLSI) circuits and architectural data-
bases. We describe an algorithm that solves this problem in worst case
time proportional to n Ig n + k, where k is the number of interesecting
pairs found. This algorithm is optimal to within a constant factor. As
an intermediate step of this algorithm, we solve a problem related to
the range searching problem that arises in database applications. Al-
though the algorithms that we describe are primarily theoretical devices
(being very difficult to code), they suggest other algorithms that are
quite practical.

Index Terms-Computational geometry, geometric intersection
problems, optimal algorithms, range searching, VLSI design rule
checking.

I. INTRODUCTION

COMPUTATIONAL GEOMETRY is the study of the
computational complexity of finite geometric problems.

The members of one interesting set of problems in computa-
tional geometry have come to be known as the geometric in-
tersection problems. These problems deal with the computa-
tion of intersection properties among sets of planar objects such
as line segments, circles, and half-spaces. Shamos and Hoey
[13] and later Bentley and Ottmann [5] have described a
number of algorithms for computing the union or intersection
of sets of such objects and for counting and reporting all in-
tersecting pairs in sets of such objects. In this paper we will
extend that work by investigating intersection problems de-
fined on sets of rectangles.
The primary problem that we will investigate is that of

rectangle intersection; we are given a set of rectangles (with
sides parallel to the coordinate axes) in the plane, and asked
to report I all pairs of rectangles that intersect each other. As
we will see later, this process is a crucial step in checking the.
design rules for very large-scale integrated (VLSI) circuitry
and currently consumes large quantities of computer time in

Manuscript received June 10, 1979; revised January 20, 1980. This research
was supported in part by the U.S. Office of Naval Research under Contract
N00014-76-C-0370 and in part by Natural Sciences and Engineering Re-
search Council of Canada under Grant A-7700.

J. L. Bentley is with the Departments of Computer Science and Mathe-
matics, Carnegie-Mellon University, Pittsburgh, PA 15213.

D. Wood is with the Unit for Computer Science, McMaster University,
Hamilton, Ont., Canada.

I Throughout this paper we will use the word "report" to mean an enum-
eration of a set in which each element is included exactly once, and with no
relative ordering implied.

real applications. We will investigate an algorithm that solves
this problem in optimal worst case time. A crucial step in our
algorithm is a solution of the two-dimensional batched range
searching problem. In geometric terms we are given a set of
rectangles and a set of points and must report, for each point,
all of the rectangles in which it lies. This problem also arises
in certain database applications. We will describe an optimal
worst case algorithm for solving this problem. Although both
of the algorithms that we will describe are very complex to code
and must therefore be considered primarily of theoretical in-
terest, they do suggest practical algorithms.
We will investigate the above problems in a top-down

fashion. In Section II we will examine the rectangle intersec-
tion problem and see how it can be reduced to the batched
range searching problem. In Section III we will then investi-
gate how the batched range searching problem can be solved
by use of a "segment tree" data structure, which we will ex-
amine in Section IV. After having derived all the necessary
components in these sections, we will see in Section V how they
can be put together to form a single algorithm. Directions for
further work and conclusions are then offered in Sections VI
and VII.

II. THE RECTANGLE INTERSECTION PROBLEM

In this section we will investigate the following problem.

The Rectangle Intersection Problem: Given n rectilinearly
oriented rectangles in the plane, report all pairwise intersec-
tions.

Two rectangles are said to intersect either if their edges in-
tersect or if one entirely encloses the other. For example, in Fig.
1 there are the five rectangles A,B,C,D, and E. On the one
hand, A and C have an edge intersection as do (A,B), (A,E),
and (B,E), while on the other hand D is rectangle-enclosed
in B and this is the only rectangle enclosure. There are there-
fore a total of five intersecting pairs of rectangles in the set.
The rectangle intersection problem arises in many appli-

cations. Eastman and Lividini [6] discuss how this problem
arises in maintaining architectural databases. A crucial ap-
plication of the problem is in VLSI design rule checking. After
a chip has been laid out, it must be verified to ensure that it
meets all design rules. These rules are of the form "objects that
are not to be connected in the circuit must be separated by at
least x1 units" or "objects that are to be connected in the circuit
must overlap by at least x2 units." (Both of these rules stem

0018-9340/80/0700-0571$00.75 © 1980 IEEE

571

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-29, NO. 7, JULY 1980

E

AL

Fig. 1. A set of rectilinearly oriented rectangles.

from the fact that the potential for lossage of edge acuity in
the fabrication process must be accounted for in the design.)
Since it is very expensive to apply these design rule checks to
all 0(n2) pairs2 of objects on an n-element chip, many systems
use a preliminary test to discard most pairs from consideration.
A common approach is based on "bounding boxes"-each
object is represented by the smallest rectangle enclosing it, and
then two objects are checked in detail if and only if their re-

spective rectangles intersect. Note that this calls for solving
precisely the rectangle intersection problem. Details of the
design rule checking problem can be found in Baird [1],
Lauther [8], or Mead and Conway [10]. To emphasize the
practical importance of the problem, we note that Baird [1]
discusses one system in which twenty-four CPU hours are

required to check a chip of one hundred thousand elements.
Much research has been devoted to the rectangle intersec-

tion problem. Baird [1] surveys many pragmatic approaches
to VLSI design rule checkings, and Lauther [8] describes an

approach based on rectangle intersections among bounding
boxes. Although no theoretical analysis of these algorithms
is known, Baird [1] does report some timing results. At the
empirical level, the authors know of no comparisons of the
available systems. In a theoretical context, Bentley and Ott-
mann [5] have described an algorithm to solve a special case

of the rectangle intersection problem that can be stated as

follows: Given n rectilinearly oriented line segments, report
all pairwise edge intersections. Their algorithm, which is op-
timal, requires 0(n lg n + k) time, where k is the number of
pairwise intersections reported.3 Since a rectangle is composed
of four line segments, their algorithm can be used to find all
k pairwise edge intersections for n rectangles in 0(n lg n + k)
time. Their algorithm does not detect rectangle enclosures,
however, so the thrust of this paper is to extend their results
to solve the rectangle intersection problem.
Our algorithm for solving the rectangle intersection problem

2 We say that f(n) = O(g(n)) if there exist positive constants c,d, and m
such that for all n > m, cg(n) f(n) < dg(n). Similarly, we write f(n) =

O(g(n)) if there exist positive constants c and m such that for all n > m,f(n)
< dg(n).
3To facilitate comparison with algorithms described later in this paper,

we will now briefly sketch their algorithm. The underlying idea is to scan

through the set of line segments from bottom to top. When the bottom endpoint
of a vertical segment is encountered, its x-value is inserted into a total order
R, when the top endpoint is encountered, the x-value is deleted from R. If the
total order is implemented as a balanced binary tree, then each of these steps
can be performed in logarithmic time. Whenever a horizontal segment is en-
countered, all x-values in R between the extreme x-values of the segment are

(correctly) reported as intersecting the segment. This requires time propor-

tional to the logarithm of the number of vertical segments plus the number
of intersections.

will consist of two stages. The first stage will find all pairs of
rectangle with edge intersections using Bentley and Ottmann's
[5] algorithm. Finding all enclosing pairs is the responsibility
of the second stage (note that having found all edge intersec-
tions and all enclosing pairs, we have found all intersecting
rectangles.) We will accomplish this by associating with each
rectangle X a representative point x in its interior. There are
now two important properties to note about rectangles and
their representative points.

1) If rectangle A enclosed rectangle B, then point b (the
representative of rectangle B) lies within rectangle A.

2) If point b lies within rectangle A, then rectangle B in-
tersects rectangle A (either by being wholly enclosed within
it or by having an edge intersection).
Our algorithm will exploit these two properties by solving the
batched range searching problem of reporting, for each rec-
tangle, all the points that lie inside it. Although the first
property tells us that this will indeed report all rectangle en-
closures, the second tells us that it may also report some of the
edge intersections, thus seemingly a great deal of extra work
is done. The crucial observation, however, is that we don't
care, since we need to report all edge intersections
anyway!

The approach that we have taken, therefore, is to reduce the
original problem of finding rectangle enclosure to that of
finding the point enclosures for n points and n rectangles. This
is a special case of the batched range searching problem, which
we discuss in the following section.

III. THE BATCHED RANGE SEARCHING PROBLEM

In this section we will study the following problem.

The Batched Range Searching Problem: Given n points and
m rectangles in the plane, report for each rectangle all of the
points that lie inside it.

Fig. 2 shows a set of 4 points and 4 rectangles; our algorithm
should report for this set that rectangle A contains points a and
b, etc. We will investigate this problem by first examining
solutions based on repeated searching, and then study an ap-
proach based on "scanning" (which is the method used in our
final algorithm). As we have seen, a solution to this problem
(which arises in certain database applications; see Bentley and
Maurer [4]) will enable us to solve the rectangle intersection
problem.
One method of solving the batched range searching problem

is to cast it as a searching problem: We organize the set of
points into a data structure and then for each rectangle we ask
for a list of all the points contained in it. Queries of this form
are called range queries, because the rectangle is defined by
a range of values in both the x and the y dimensions. Many
algorithms for range searching have been investigated recently;
a summary of the results can be found in Bentley and Maurer
[4]. The algorithms described in that paper can be used to give
algorithms for batched range searching that have running time
of 0(n lg n + k) (where k is the total number of points reported
to lie within the rectangles) for the case that there are many
more points than rectangles. More formally, this holds if m
grows more slowly than n I -E for some positive constant e (for

572

BENTLEY AND WOOD: REPORTING INTERSECTIONS OF RECTANGLES5

I I

I,' I I ', I, ' I I, '.I
I I11 ' %' 1 1 ' 1

I ,III.II I It
I I

L

IL I I xI I,

I ' I I , x

I I

L, I , I
I I

, I L . I I ,I I ,

x

Fig. 2. The segment tree.

instance, if the number of rectangles is proportional to the
square root of the number of points). An algorithm with time
O(m lg m + k) can likewise be given for sets in which the
number of points grows much more slowly than the number
of rectangles. Applying the methods described by Bentley and
Maurer to the case that m = n, however, leads to an algorithm
with running time 0(n lg2 n + k). Since our main interest is the
case m = n and we would like a running time of O(n lg n + k),
the repeated searching method must be discarded in favor of
some other approach.
The new approach that we will take to solving the batched

range searching problem is based on scanning. The description
of the algorithm in this section will be rather intuitive; a more

formal description will be presented in Section V. The primary
step of our algorithm is to "sweep" a horizontal line through
the points and rectangles. During this sweep we maintain a set
S of line segments that are the projections of rectangles in the
set onto the x axis. Initially S is empty. When we encounter
a new rectangle R during the sweep we insert its corresponding
segment into S; as we leave a rectangle we delete the corre-

sponding segment from S. When we encounter a point p during
the sweep we must report all of the rectangles that contain it.
Notice that any containing rectangle must satisfy the following
two properties: it is currently contained in S (otherwise its y
range does not contain p's y value) and its projection onto the
x axis must contain p's x value. Combining these observations,
we can find all the rectangles that contain point p by merely
reporting all segments in S that contain p's x value.
We can now describe our algorithm for batched range

searching more precisely. The first step is to sort the rectangles
and the points by y values (notice that each rectangle is rep-

resented twice-once for its bottom edge and once for its top).
We then initialize S to the empty set, and scan through the
sorted list of rectangles and points. As we enter a rectangle we
insert the corresponding segment into S, as we leave a rec-

tangle we delete the segment, and as we encounter a point we
report all segments that overlap its x-projection as rectangles
containing the point. The correctness of this algorithm can be

established by formalizing the observations mentioned
above.
We have now reduced the batched range searching problem

to the problem of maintaining a set of line segments such that
segments can be efficiently inserted and deleted, and a query
asking for all segments that cover a given point can be an-
swered quickely. (We say a segment covers a point if the point
lies between the segment's endpoints.) In the next section we
will investigate a data structure called the segment tree that
permits all these operations to be performed in logarithmic
time. We will now state precisely the properties required of the
segment tree to ensure the efficiency of the batched range
searching algorithm.

The Segment Tree: The segment tree data structure must
be able to perform the following operations on m line segments
within the described time bounds.

1) Insert a new line segment in time proportional to Ig m.
2) Delete a line segment in time proportional to Ig m.
3) Report all line segments that cover a given point p in

time proportional to Ig m + kp, where kp is the number of line
segments covering p.
Note that the m + 1 endpoints that define the line segments
are known before execution of any of the above operations.

IV. THE SEGMENT TREE

In this section we will show how the segment tree data
structure can be used to maintain a set of line segments in the
plane. The segment tree is based on the idea of representing
a set of intervals on the line by a perfectly balanced binary tree;
a line segment is then represented by "covering" it with certain
nodes of the tree. In this section we will first examine some
abstract properties of line segments and binary trees, and then
show how these properties can be used to implement our seg-
ment tree data structure.
The first property of segments that we will utilize is the fact

that for the particular application of batched range searching,
the values (locations) of the endpoints of all the segments are
known before any processing at all. Without loss of generality,
we can assume that these endpoints occupy the integer coor-
dinates 0, 1, 2, ,m, where m < 2n (that is, the number of
endpoints cannot be greater than twice the number of rec-
tangles). We can make this simplification to integers because
the essential property of the endpoints is their relative ordering
and not their absolute value; implementations, however, must
be careful at this point. Having now made the simplification
that the endpoints of the segments are integers, a segment can
be defined by a pair of integers, (i,j), such that 1 < i <j < m.
We will also make the simplifying assumption that m is a
power of 2; this is for pedagogic purposes only, and will not be
detrimental to implementations.
We will now see how a set of (consecutive) intervals on the

line can be represented by a binary "interval tree." Specifically,
we wish to represent the m intervals [0,1], [1,2], , [m - 1,
m]. We represent these segments by the tree depicted in Fig.
3(a) where each node on the bottom level represents a single
interval of length one. On the next -higher level each node
represents an interval of length two (that starts at a power of
2). This continues, and on the jth level from the bottom there

573

I
I

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-29, NO. 7, JULY 1980

A

I I

I I A
LAT

IkL
'A, B 'A, C

I I I I
%

I
I

ILJILJ8'
Fig. 3. A collection of points and rectangles.

are 21g in-] intervals represented, each of length 2i and be-
ginning at a power of 2i. It is now easy to represent a line
segmentX in such an interval tree: We "mark" with anX every
node in the tree whose interval is contained in X, on the con-
dition that that node'sfather is not also contained in X. We
call this the canonical covering ofX in the tree. A segmentX
and its canonical covering in an interval tree are shown in Fig.
3(b).

It is easy to describe a recursive algorithm to compute the
canonical covering of a line segment X in an interval tree T in
6(lg m) time. The algorithm is initially invoked at the root of
the tree. As it visits any node it compares the interval repre-
sented by the node with the input segment X. If X wholly
contains the node's interval, then the procedure marks the node
accordingly and returns (notice that the sons do, in fact, remain
correctly unmarked-their father is wholly contained in X).
If the segment X does not wholly contain the node's interval,
does intersect one of the node's sons, and does not intersect with
the node's other son, then the node is not marked and only the
intersecting son is recursively visited. The last possible case is
that the node's interval is not wholly contained in segment X
butX does intersect both of its sons; in this case both sons are
visited recursively. To establish the O(lg m) running time of
this algorithm it is sufficient to observe that the algorithm visits
at most four nodes and marks at most two nodes on each of the
lg m + 1 levels of the tree when representing any segment.

With this background in interval trees and canonical cov-
erings, it is easy to define a segment tree. The underlying
structure of a segment tree is an interval tree, with the intervals
at the leaves of the tree defined by the endpoints of the set of
segments that we are to process (which we assume are the in-
tegers 0, 1, 2,... , m). We represent a segment X in this tree
by marking with "X" the tree's nodes of the segment X's ca-
nonical covering. An illustration of a segment set and its cor-
responding segment tree is shown in Fig. 4(a). The binary tree
structure is implemented in the typical manner (see Knuth
[14]). The set of segments currently marking a given node in
the tree is implemented by a double linked list. The concrete
implementation of the abstract tree of Fig. 4(a) is depicted in
Fig. 4(b).
We must now define how the three operations of inserting

a segment, querying (asking for all segments that cover a given
point) and deleting a segment are to be implemented. The
operation of inserting a segmentX is easy: we just use the al-
gorithm that visits the canonical covering ofX to find each of
the nodes at which X must be represented. At each of these
nodes we add X to the front of the doubly linked list repre-
senting the segments that currently contain the interval cor-

C
(a)

(b) - %

Fig. 4. (a) Abstract and (b) concrete segment trees.

responding to the node. The time complexity of this operation
is O(lg m).
To answer a query asking for all the segments that contain

a given point p we "go down" the binary tree, finding the unit
segment in which p lies. As the search visits each node, we
know that every segment that contains a visited node must
contain p. Thus as we visit each node we traverse the linked
list and report each segment in the list as containing p. Since
any segment containing p must contain one of the intervals on
the path from the root to p, this algorithm correctly performs
the query. The time required by this search will be logarithmic
in m (for going down the tree), and linear in the number of
segments found to intersect the point p, which we will call kp.
Thus the total cost of performing a query is 6(lg m + kp).
The problem of deleting a line segment from a segment tree

is more subtle than either insertion or querying. The algorithm
for finding the canonical covering would allow us to find all
the nodes in which the segment is currently marked; the
problem then becomes that of locating the particular node in
the linked list to be deleted-a sequential scan of the list is
much too slow. To accomplish deletion quickly we will instead
keep an auxiliary table4 that contains an entry for each seg-
ment currently stored in the segment tree. The auxiliary table
contains at most m elements, so the entry for segmentX can
be obtained in O(lg m) time. The entry for segment X is a
linked list containing points to each of the at at most 2 lg m -
2 markers in node lists representing segment X. These linked
lists can be easily built as each segment X is inserted (into the
segment tree). The pointer will tell us the location of the node
to be deleted in each chain, and since the chains in each tree
node are doubly-linked we can accomplish deletion in constant
time at each node. The total cost of deleting an entire segment
is therefore 6(lg m).

4 If this table is implemented as a balanced binary tree (see Knuth [14]),
then each access will require time logarithmic in the sWze of the table. If each
rectangle is identified by a unique integer in the range I ... n, then imple-
menting the table as an array will allow constant access time.

574

BENTLEY AND WOOD: REPORTING INTERSECTIONS OF RECTANGLES

To summarize the segment tree that we have studied in this
section, we will briefly review the costs of manipulating it when
it represents an m-element set. The empty tree of m elements
can be built in 0(m) time. Inserting or deleting a line segment
requires 0(lg m) time, and all segments that intersect a given
point can be reported in time proportional to lg m plus the
number of segments reported. The space required by the empty
tree is 0(m) words, and since each segment can be represented
up to 6(lg m) times in the tree, the total worst case space re-
quired by a segment tree is 0(m lg m) words.

V. THE ENTIRE ALGORITHM

In the previous sections of this paper we have investigated
the rectangle intersection problem in a top-down fashion. Al-
gorithm Reclnt is a complete description of the resulting pro-
cedure.

Algorithm Reclnt

Input

A list of n rectilinearly oriented rectangles. Each rectangle
is defined by four reals giving its bottom, top, left, and right
extreme points.

Output

A list of all intersecting pairs of rectangles. An element is
added to this list by calling the "report" function in the fol-
lowing procedure. A pair of rectangles is said to intersect if
either their edges intersect or one lies wholly within the
other.

Procedure

I) Find all pairs ofrectangles with intersecting edges. This
step is accomplished by use of Bentley and Ottmann's [1979]
algorithm for reporting all intersecting pairs among a set of
horizontal and vertical line segments.

2) Find all pairs ofrectangles in which one is entirely en-
closed by the other. To accomplish this we will first generate
a set of points T in which each rectangle is represented by one
of its interior points (its centroid, for example). We will now
find for all points a list of all the rectangles containing that
point. We then process that list by comparing each rectangle
on the list to the rectangle that the point is representing. If the
rectangles have an edge intersection, nothing happens; oth-
erwise the new rectangle entirely contains the rectangle rep-
resented by the point, and we report that pair of rectangles as
intersecting. We now describe the procedure that will find for
each point all the rectangles that contain it.

a) Sort the set of all rectangles and points by y-values.
Each rectangle is represented twice, once for its bottom
value and once for its top value, and each point is repre-
sented once. (This sorted list will be used in the bottom-
to-top scan.)
b) Build an empty segment tree representing the (at
most) 2n - 1 x-intervals defined by the left and right
endpoints of the n rectangles.
c) Scan through the sorted list created in step a). As

each element is encountered, take the appropriate one
of the following actions.

i) Bottom ofa Rectangle: Insert the segment that is
the projection of that rectangle onto the x-axis into
the segment tree.
ii) Top of a Rectangle: Delete the corresponding
segment.
iii) A Point: Search the segment tree to determine
all segments that overlap the projection of this point
onto the x-axis. The rectangles corresponding to
these segments are precisely the rectangles contain-
ing the point, and they should be processed as de-
scribed previously.

Time Analysis

We will show that the worst case running time of the pre-
ceding procedure is 6(n lg n + k), where k is the number of
intersecting rectangles reported. It is clear that our algorithm
must take at least that much time (since it performs a sort of
n elements and reports k intersecting pairs); we will now show
that both steps 1) and 2) take no more than O(n lg n + k)
time.

1) Bentley and Ottmann [5] show that the time required
by this step is proportional to n lg n plus the number of edge
intersections found. Since the number of such edge intersec-
tions is less than or equal to k (the total number of rectangle
intersections), this step has running time of O(n lg n + k).

2) We analyze the components of this step as follows.
a) The sort takes time proportional to n Ig n.
b) The endpoints of the rectangles must be sorted by
x-value in this step. After that, the empty tree can be
constructed in linear time. The total time required by
this step is therefore proportional to n lg n.
c) During this scan each rectangle is examined twice
and each point is examined once. The total number of
objects examined is therefore 3n. Each time a rectangle
is examined we either insert or delete an element of the
segment tree. Since the cost of these operations is loga-
rithmic, the total time spent in insertions and deletions
is proportional to n lg n. The cost for each of the n seg-
ment searches performed in step iii) is proportional to lg
n plus the number of line segments found. The total
number of such containing segments found during the
entire algorithm is bounded above by k, the number of
intersecting rectangles. Hence, the total amount of time
spent in this step is O(n lg n + k).

Space Analysis
The space required by step 1) is proportional to n, and the

space required by step 2) is 6(n lg n) [for representing each
segment up to O(lg n) times in the segment tree]. The total
space required by the algorithm is therefore O(n lg n)
words.

Discussion

The 6(n lg n + k) running time of this algorithm can be
proved optimal by the methods described by Shamos and Hoey
[1 3] (see also Fredman and Weide [7]). Bentley et al. [3] have

575

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-29, NO. 7, JULY 1980

implemented a program (based on Algorithm Reclnt) in which
the edge-intersection algorithm of Bentley and Ottmann [5]
and the rectangle enclosure algorithm are combined in one
scan through the data. Their program achieves linear expected
time at the cost of having quadratic worst case time. Prelimi-
nary results indicate that their algorithm should be able to solve
practical design rule problems very efficiently.

VI. FURTHER WORK

Although Algorithm Reclnt answers an important question
in the study of geometric intersection problems, a number of
open problems remain. We will now briefly mention some of
these directions open for research.
The H(n lg n + k) worst case running time of our algorithm

is optimal. It is not known whether the 0(n lg n) space it re-
quires is also optimal. We conjecture that the space require-
ments can be reduced to 0(n).5
We have solved the rectangle intersection problem by

combining two algorithms. The first algorithm (due to Bentley
and Ottmann [5] determines the pairwise edge intersections,
while the second, presented in the previous sections, determines
all rectangle enclosures and some of the edge intersections.
This leaves open the rectangle enclosure problem of deter-
mining all pairwise rectangle enclosures among a set of n
rectangles. Can this be carried out in 0(n lg n + k) time in the
worst case, where k is the number of such enclosures?
A final open problem is to develop a general algorithm for

reporting intersections in geometric sets. The algorithms of
Shamos and Hoey [1 3] and Bentley and Ottmann [5] as well
as those described in this paper, all crucially depend on ex-
ploiting a particular property of the objects among which they
are finding intersections (such as circles, line segments, or
rectangles). All of the algorithms do, however, share the same
"scanning" strategy, and this suggests that there might exist
a single 0(n lg n + k) algorithm for reporting intersections in
sets that contain many different kinds of geometric objects
(such as circles, line segments, polygons, etc.). An obvious
extension calls for working on objects in three (and higher)
dimensional space; examples and applications of such algo-
rithms are described by van Leeuwen and Wood [9] and
Eastman and Lividini [6]. Preparata [11] and Shamos [12]
discuss problems of searching in geometric sets; it would be
nice to include the problems of searching in a general
theory.

we employed in deriving these algorithms might probe to be
fundamental in computational geometry. The idea of scanning
(solving a problem by passing through the point set in bot-
tom-to-top order) has already found a number of applications;
see Shamos [1 2]. A more novel technique is the idea of seg-
ment trees for representing line segments; an example of a very
similar structure in another geometric problem can be found
in Bentley [2].

ACKNOWLEDGMENT

The helpful comments of M. Ast, D. Haken, and the anon-
ymous referees are gratefully acknowledged.

REFERENCES

[1] H. S. Baird, "Fast algorithms for LSI artwork analysis," J. Des. Autom.
Fault-Tolerant Comput., vol. 2, no. 2, pp. 179-209, 1978.

[2] J. L. Bentley, "Algorithms for Klee's rectangle problems," unpublished
notes, Carnegie-Mellon Univ., Pittsburgh, PA, 1977 (described in van
Leeuwen and Wood [9]). %

[3] J. L. Bentley, D. Haken and R. Hon, "Fast geometric algorithms for
VLSI tasks," IEEE CompCon Spring '80, 1980, pp. 88-92.

[4] J. L. Bentley, and H. A. Maurer, "Efficient worst-case data structures
for range searching," Acta Informatica, vol. 13, no. 2, pp. 155-168,
1980.

[5] J. L. Bentley and T. Ottmann, "Algorithms for reporting and counting
geometric intersections," IEEE Trans. Comput., vol. C-28, pp. 643-647,
Sept. 1979.

[6] C. M. Eastman and J. Lividini, "Spatial search," Institute of Physical
Planning, Res. Rep. 55, Carnegie-Mellon University, Pittsburgh, PA,
(16 pp.), May 1975.

[7] M. Fredman and B. W. Weide, "On the complexity of computing the
measure of u [ai,bi]," Commun. Assoc. Comput. Mach., vol. 21, no. 7,
pp. 540-544, 1978.

[8] U. Lauther, "4-dimensional binary search trees as a means to speed up
associative searches in design rule verification of integrated circuits,"
J. Des. Autom. Fault-Tolerant Comput., vol. 2, no. 3, pp. 241-247,
1978.

[9] J. van Leeuwen and D. Wood, "The measure problem for rectangular
ranges in d-space," Rijkuniversiteit Ultrecht Rep. RUU-CS-79-6, July
1979; also J. Algorithms, to be published.

[10] C. Mead and L. Conway, Introduction to VLSI Systems. Reading,
MA: Addison-Wesley, 1980.

[11] F. P. Preparata, "A new approach to planar point location," Tech. Rep.
ACT-ll, Coordinated Sci. Lab., Univ. of Illinois, Urbana, IL, 1979.

[12] M. 1. Shamos, "Problems in computational geometry," Ph.D. disser-
tation, Yale University, New Haven, CT.

[13] M. I. Shamos and D. J. Hoey, "Geometric intersection problems," in
Proc. 17th Annu. IEEE Symp. Foundations ofComputer Science, pp.
208-215, 1976.

[14] D. E. Knuth, The Art ofComputer Programming, Volume 3: Sorting
and Searching. Reading, MA: Addison-Wesley, 1973.

VII. CONCLUSIONS

In this paper we have examined two optimal worst case al-
gorithms: one for the rectangle intersection problem, the other
for the batched range searching problem. The rectangle in-
tersection problem is particularly important in practice because
of its relation to VLSI design rule checking. Two methods that

Jon L. Bentley (M'79) was born in Long Beach, CA, on February 20,
Dr. E. McCreight of Xerox Palo Alto Research Center has shown that 1953. He received the B.S. degree in mathematical sciences from Stan-

this is indeed the case (in a private communication). ford University, Stanford, CA, in 1974, and the M.S. and Ph.D. degrees

576

IEEE TRANSACTIONS ON COMPUTERS, VOL. c-29, NO. 7, JULY 1980

in computer science from the University of North
Carolina at Chapel Hill in 1976.
He worked as a Research Intern at the Xerox

Palo Alto Research Center from 1973 to 1974.
During the summer of 1975 he was a Visiting
Scholar at the Stanford Linear Accelerator Cen-
ter. From 1975 to 1976 he was a National Science
Foundation Graduate Fellow. He was awarded the
Second Prize in the 1974 ACM Student Paper
Competition. In 1977 he joined the faculty of Car-
negie-Mellon University, Pittsburgh, PA, as an

Assistant Professor of Computer Science and Mathematics. His primary re-
search interests include the design and analysis of computer algorithms
(especially for geometrical and statistical problems) and the mathematical
foundations of computation. Other research areas in which he has worked
include software engineering tools and novel computer architectures.

Dr. Bentley is a member of the Association for Computing Machinery and
Sigma Xi.

Derick Wood received the Ph.D. degree in mathe-
matics from the University of Leeds, Leeds, En-
gland in 1968.

From 1968 to 1970 he was associated with the
Department of Computer Science, Courant Insti-
tute of Mathematical Sciences as an Assistant Re-
search Scientist. In 1970 he joined the Depart-
ment of Applied Mathematics at McMaster Uni-
versity, Hamilton, Ont., Canada, as an Assistant
Professor. From 1978 he has been Professor of Ap-
plied Mathematics and currently is Chairman of

the Unit for Computer Science. His research interests include formal language
theory, search trees, data encoding, analysis of algorithms and computational
geometry.

Dr. Wood is a member of the Association for Computing Machinery, the
American Mathematical Society, the Canadian Information Processing So-
ciety and a member of the Council of the European Association for Theoretical
Computer Science. He is also a member of the Editorial Board of the Inter-
national Journal ofComputer Mathematics.

A Dynamically Microprogrammable
Computer with Low-Level Parallelism

HIROSHI HAGIWARA, SHINJI TOMITA, SHIGERU OYANAGI, AND KIYOSHI SHIBAYAMA

Abstract-A new microprogrammable computer with low-level
parallelism was built and has been utilized as a research vehicle for
solving different classes of research-oriented applications such as
real-time processings on static/dynamic images, pictures and signals,
and emulations of both existing and virtual machines including high
(intermediate) level language machines. The design goal of the machine
was to achieve a high degree of processing enhancement in research-
oriented applications by means of a low-level parallel processing or-
ganization combined with dynamically microprogrammable control.
The machine has the capability to process multiple data streams,
performing parallel operations with four 16-bit ALU's. These ALU's
are independently controlled by the different fields of a 160-bit hori-
zontal-type microinstruction, and have simultaneous access to 15
working registers. This microprogrammed MIMD organization is
expected to provide a greater degree of flexibility for low-level parallel
processing. In addition, not only does the machine contain powerful
ALU's and a large number of registers, but also it employs flexible
control structures and a hierarchical organization of control storage.
All of these combine to yield extensive microprogramming capability
which the user can effectively tailor to a wide spectrum of applica-
tions.

Manuscript received April 15, 1978; revised October 26, 1979. This work
was supported in part by the Japanese Ministry of Education.
The authors are with the Department of Information Science, Kyoto Uni-

versity, Kyoto, Japan.

Throughout this paper, emphasis will be placed on the advantages
of the low-level parallel processing system over conventional machines
and on how it can be effectively tailored to a wide spectrum of appli-
cations.

Index Terms-Computer animation, emulation, firmware, micro-
programming, parallel processing, real-time applications, virtual
control storage.

I. INTRODUCTION

V ARIOUS requirements from the fields of hardware,Vsoftware, and application have provided an impetus for
the development of innovative techniques for the advancement
of computer architectures. Microprogramming is one of the
most typical techniques that attracts our attention by its
flexibility in bridging the gap between hardware and software.
It not only affords computer manufacturers systematic ap-
proaches to hardware design and maintenance, but also enables
users to tailor the machine architectures to the applications
at hand through the use of writable control storage.
We developed a research-oriented computer called QA- 1.

The design goal of the QA- 1 was to achieve a high degree of
processing enhancement in research-oriented applications by
means of a low-level parallel organization combined with dy-

0018-9340/80/0700-0577s00.75 C) 1980 IEEE

577

